5 research outputs found

    Comparative assessment of energy metabolism, body composition and metabolic features in children with hypothalamic and simple obesity

    Get PDF
    Background: Hypothalamic obesity often develops after surgical treatment of craniopharyngioma and is characterized by rapid weight gain, high frequency of metabolic disorders, body composition specificity and resistance to standard lifestyle modification approaches and medication therapy of obesity. Recent studies show that one of the mechanisms, explaining weight gain in these children is decrease in resting energy expenditure (REE).Aims: To compare REE, body composition parameters, and the frequency of metabolic disorders in children with hypothalamic and simple obesity.Materials and methods: The study included 60 obese children aged 7 to 17 years, divided into two groups. The study group included 20 children with hypothalamic obesity, developed after craniopharyngioma treatment. The control group consisted of 40 children with simple obesity. Body composition, REE, and metabolic disorders were associated in all children.Results: Children with hypothalamic obesity showed a significant decrease of resting energy expenditure. The average decrease in REE was 13.1%, but in single patients it reached 33.4%. The percentage of fat mass in hypothalamic and simple obesity does not differ significantly (39.7% [36.2; 42.6] vs 38.8 % [35.9; 43.2]; p=0.69). Screening for metabolic disorders revealed a high prevalence of metabolic disorders in hypothalamic obesity: impaired glucose tolerance - in 10%; dyslipidemia - 55%, insulin resistance-50%, non-alcoholic fatty liver disease - 60 %.Conclusions: Children with hypothalamic obesity showed a significant decrease of resting energy expenditure. When planning a diet in this group of patients it is preferable to use indirect calorimetry. Hypothalamic obesity even at an early age is associated with a high frequency of metabolic disturbance. Hypothalamic obesity in children is not associated with more pronounced hyperinsulinemia and insulin resistance compared to the simple obesity

    X-linked acrogigantism syndrome: clinical profile and therapeutic responses

    No full text
    X-linked acrogigantism (X-LAG) is a new syndrome of pituitary gigantism, caused by microduplications on chromosome Xq26.3, encompassing the gene GPR101, which is highly upregulated in pituitary tumors.We conducted this study to explore the clinical, radiological, and hormonal phenotype and responses to therapy in patients with X-LAG syndrome. The study included 18 patients (13 sporadic) with X-LAG and microduplication of chromosome Xq26.3. All sporadic cases had unique duplications and the inheritance pattern in two families was dominant, with all Xq26.3 duplication carriers being affected. Patients began to grow rapidly as early as 2-3 months of age (median 12 months). At diagnosis (median delay 27months), patients had a median height and weight standard deviation scores (SDS) of > +3.9 SDS. Apart from the increased overall body size, the children had acromegalic symptoms including acral enlargement and facial coarsening. More than a third of cases had increased appetite. Patients had marked hypersecretion of GH/IGF1 and usually prolactin, due to a pituitary macroadenoma or hyperplasia. Primary neurosurgical control was achieved with extensive anterior pituitary resection, but postoperative hypopituitarism was frequent. Control with somatostatin analogs was not readily achieved despitemoderate to high levels of expression of somatostatin receptor subtype-2 in tumor tissue. Postoperative use of adjuvant pegvisomant resulted in control of IGF1 in allfive cases where it was employed. X-LAGis anewinfant-onset gigantismsyndrome thathas a severe clinical phenotype leading to challenging disease management

    X-linked acrogigantism syndrome: clinical profile and therapeutic responses.

    No full text
    X-linked acrogigantism (X-LAG) is a new syndrome of pituitary gigantism, caused by microduplications on chromosome Xq26.3, encompassing the gene GPR101, which is highly upregulated in pituitary tumors. We conducted this study to explore the clinical, radiological, and hormonal phenotype and responses to therapy in patients with X-LAG syndrome. The study included 18 patients (13 sporadic) with X-LAG and microduplication of chromosome Xq26.3. All sporadic cases had unique duplications and the inheritance pattern in two families was dominant, with all Xq26.3 duplication carriers being affected. Patients began to grow rapidly as early as 2-3 months of age (median 12 months). At diagnosis (median delay 27 months), patients had a median height and weight standard deviation scores (SDS) of >+3.9 SDS. Apart from the increased overall body size, the children had acromegalic symptoms including acral enlargement and facial coarsening. More than a third of cases had increased appetite. Patients had marked hypersecretion of GH/IGF1 and usually prolactin, due to a pituitary macroadenoma or hyperplasia. Primary neurosurgical control was achieved with extensive anterior pituitary resection, but postoperative hypopituitarism was frequent. Control with somatostatin analogs was not readily achieved despite moderate to high levels of expression of somatostatin receptor subtype-2 in tumor tissue. Postoperative use of adjuvant pegvisomant resulted in control of IGF1 in all five cases where it was employed. X-LAG is a new infant-onset gigantism syndrome that has a severe clinical phenotype leading to challenging disease management

    Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation

    No full text
    BACKGROUND: Increased secretion of growth hormone leads to gigantism in children and acromegaly in adults; the genetic causes of gigantism and acromegaly are poorly understood. METHODS: We performed clinical and genetic studies of samples obtained from 43 patients with gigantism and then sequenced an implicated gene in samples from 248 patients with acromegaly. RESULTS: We observed microduplication on chromosome Xq26.3 in samples from 13 patients with gigantism; of these samples, 4 were obtained from members of two unrelated kindreds, and 9 were from patients with sporadic cases. All the patients had disease onset during early childhood. Of the patients with gigantism who did not carry an Xq26.3 microduplication, none presented before the age of 5 years. Genomic characterization of the Xq26.3 region suggests that the microduplications are generated during chromosome replication and that they contain four protein-coding genes. Only one of these genes, GPR101, which encodes a G-protein-coupled receptor, was overexpressed in patients' pituitary lesions. We identified a recurrent GPR101 mutation (p.E308D) in 11 of 248 patients with acromegaly, with the mutation found mostly in tumors. When the mutation was transfected into rat GH3 cells, it led to increased release of growth hormone and proliferation of growth hormone-producing cells. CONCLUSIONS: We describe a pediatric disorder (which we have termed X-linked acrogigantism [X-LAG]) that is caused by an Xq26.3 genomic duplication and is characterized by early-onset gigantism resulting from an excess of growth hormone. Duplication of GPR101 probably causes X-LAG. We also found a recurrent mutation in GPR101 in some adults with acromegaly. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others.)
    corecore