18 research outputs found
A System for Optimizing Fertilizer Dosing in Innovative Smart Fertigation Pipelines: Modeling, Construction, Testing and Control
Smart fertigation is a topic of great interest in the effort to optimize different activities involved in local and extensive agriculture for assisting crops, optimizing production by using wireless technologies, data-processing electronic boards and sensors network. With the advent of Agriculture 4.0, similar to Industry 4.0, Information Communication Technology (ICT), associated with mechatronics, is giving an added value to this technique allowing optimization of water, fertilizers, control of water flow in pipes and period of irrigation. This paper intends to illustrate findings related to an innovative low cost system for assisting crops and achieving an accurate farming by investigating on the design, construction, testing and control of dosing system for liquid and granular fertilizers. Four different dosage systems have been designed, realized and tested with different granular and liquid fertilizers; the analysis of an extensive experimental campaign allows to define the characteristic and the mathematical expressions for each analyzed fertilizer and for each dosage system. The accurate modeling allows to control with extreme precision the realized dosing systems after estimating the quantity of fertilizer which the crop needs by means of the smart fertigation system. The obtained results permit the optimization of the fertilizer dosage in terms of quantity, which at the same time translates into lower production costs, greater environmental sustainability and optimization of production in terms of quantity and quality
Analysis of HDL-microRNA panel in heterozygous familial hypercholesterolemia subjects with LDL receptor null or defective mutation
In the last years increasing attention has been given to the connection between genotype/phenotype and cardiovascular events in subjects with familial hypercholesterolemia (FH). MicroRNAs (miRs) bound to high-density lipoprotein (HDL) may contribute to better discriminate the cardiovascular risk of FH subjects. Our aim was to evaluate the HDL-miR panel in heterozygous FH (HeFH) patients with an LDLR null or defective mutation and its association with pulse wave velocity (PWV). We evaluated lipid panel, HDL-miR panel and PWV in 32 LDLR null mutation (LDLR-null group) and 35 LDLR defective variant (LDLR-defective group) HeFH patients. HDL-miR-486 and HDL-miR-92a levels were more expressed in the LDLR-null group than the LDLR-defective group. When we further stratified the study population into three groups according to both the LDLR genotype and history of ASCVD (LDLR-null/not-ASCVD, LDLR-defective/not-ASCVD and LDLR/ASCVD groups), both the LDLR/ASCVD and the LDLR-null/not-ASCVD groups had a higher expression of HDL-miR-486 and HDL-miR-92a than the LDLR-defective/not-ASCVD group. Finally, HDL-miR-486 and HDL-miR-92a were independently associated with PWV. In conclusion, the LDLR-null group exhibited HDL-miR-486 and HDL-miR-92a levels more expressed than the LDLR-defective group. Further studies are needed to evaluate these HDL-miRs as predictive biomarkers of cardiovascular events in FH