26 research outputs found

    Surface electromyography low-frequency content: Assessment in isometric conditions after electrocardiogram cancellation by the Segmented-Beat Modulation Method

    Get PDF
    Background: Surface electromyography (SEMG) is widely used in clinics for assessing muscle functionality. All procedures proposed for noise reduction alter SEMG spectrum, especially in the low-frequency band (below 30 Hz). Indeed, low-frequency band is generally addressed to motion artifacts and electrocardiogram (ECG) interference without any further investigation on the possibility of SEMG having significant spectral content. The aim of the present study was evaluating SEMG frequency content to understand if low-frequency spectral content is negligible or, on the contrary, represents a significant SEMG portion potentially providing relevant clinical information. Method: Isometric recordings of five muscles (sternocleidomastoideus, erectores spinae at L4, rectus abdominis, rectus femoris and tibialis anterior) were acquired in 10 young healthy voluntary subjects. These recordings were not affected by motion artifacts by construction and were pre-processed by the Segmented-Beat Modulation Method for ECG deletion before performing spectral analysis. Results: Results indicated that SEMG frequency content is muscle and subject dependent. Overall, the 50th[25th;75th] percentiles spectrum median frequency and spectral power below 30 Hz were 74[54; 87] Hz and 18[10; 31] % of total (0–450 Hz) spectral power. Conclusions: Low-frequency spectral content represents a significant SEMG portion and should not be neglected. Keywords: Surface electromyographic signal, Electromyographic spectrum, Segmented-Beat Modulation Method, Non-linear filtering, Spectral analysi

    Variability of Muscular Recruitment in Hemiplegic Walking Assessed by EMG Analysis

    Get PDF
    Adaptive variability during walking is typical of child motor development. It has been reported that neurological disorders could affect this physiological phenomenon. The present work is designed to assess the adaptive variability of muscular recruitment during hemiplegic walking and to detect possible changes compared to control populations. In the attempt of limiting the complexity of computational procedure, the easy-to-measure coecient of variation (CV) index is adopted to assess surface electromyography (sEMG) variability. The target population includes 34 Winters’ type I and II hemiplegic children (H-group). Two further healthy populations, 34 age-matched children (C-group) and 34 young adults (A-group), are involved as controls. Results show a significant decrease (p < 0.05) of mean CV for gastrocnemius lateralis (GL) in H-group compared to both C-group (15% reduction) and A-group (35% reduction). Reductions of mean CV are detected also for tibialis anterior (TA) in H-group compared to C-group (7% reduction, p > 0.05) and A-group (15% reduction, p < 0.05). Lower CVs indicate a decreased intra-subject variability of ankle-muscle activity compared to controls. Novel contribution of the study is twofold: (1) To propose a CV-based approach for an easy-to-compute assessment of sEMG variability in hemiplegic children, useful in different experimental environments and different clinical purposes; (2) to provide a quantitative assessment of the reduction of intra-subject variability of ankle-muscle activity in mild-hemiplegic children compared to controls (children and adults), suggesting that hemiplegic children present a limited capability of adapting their muscle recruitment to the different stimuli met during walking task. This finding could be very useful in deepening the knowledge of this neurological disorder

    EMG-Based Characterization of Walking Asymmetry in Children with Mild Hemiplegic Cerebral Palsy

    Get PDF
    5 May 2019; Accepted: 24 June 2019; Published: 27 June 2019 Abstract: Hemiplegia is a neurological disorder that is often detected in children with cerebral palsy. Although many studies have investigated muscular activity in hemiplegic legs, few EMG-based findings focused on una ected limb. This study aimed to quantify the asymmetric behavior of lower-limb-muscle recruitment during walking in mild-hemiplegic children from surface-EMG and foot-floor contact features. sEMG signals from tibialis anterior (TA) and gastrocnemius lateralis and foot-floor contact data during walking were analyzed in 16 hemiplegic children classified as W1 according to Winter’ scale, and in 100 control children. Statistical gait analysis, a methodology achieving a statistical characterization of gait by averaging surface-EMG-based features, was performed. Results, achieved in hundreds of strides for each child, indicated that in the hemiplegic side with respect to the non-hemiplegic side, W1 children showed a statistically significant: decreased number of strides with normal foot-floor contact; decreased stance-phase length and initial-contact sub-phase; curtailed, less frequent TA activity in terminal swing and a lack of TA activity at heel-strike. The acknowledged impairment of anti-phase eccentric control of dorsiflexors was confirmed in the hemiplegic side, but not in the contralateral side. However, a modified foot-floor contact pattern is evinced also in the contralateral side, probably to make up for balance requirements

    Advanced Techniques for EMG-based Assessment of Muscular Co-Contraction During Walking

    No full text
    L'analisi del cammino è definita come lo studio sistematico della locomozione umana. Una parte centrale dell'analisi del cammino è rappresentata dall'elettromiografia di superficie (sEMG). Un ruolo centrale nel controllo del cammino è svolto dai muscoli degli arti inferiori, e in particolare dalla co-contrazione muscolare degli arti inferiori. La co-contrazione muscolare è definita come il reclutamento concomitante di muscoli antagonisti che afferiscono a un determinato giunto. In soggetti sani, la co-contrazione esercita una pressione omogenea sulla superficie articolare, preservandone la stabilità articolare. In individui patologici, la co-contrazione sembra avere un ruolo chiave nello sviluppo di strategie di compensazione durante la riabilitazione motoria. Per la quantificazione dell'attività di co contrazione dei muscoli degli arti inferiori, diverse metodologie basate su sEMG sono state sviluppate ma uno standard per identificare la co-contrazione muscolare non è ancora disponibile. Dunque, obiettivo è l'analisi della co contrazione dei muscoli delle gambe nel dominio tempo-frequenza durante il cammino e la determinazione di dati normativi durante il cammino sano adulto e pediatrico. L'analisi mediante trasformata Wavelet (WT) è uno strumento appropriato per sviluppare un nuovo approccio per la valutazione della co-contrazione muscolare nel dominio tempo frequenza. Il metodo proposto è denominato CODE: CO-contraction DEtection. Un'ulteriore applicazione dell'analisi WT è l'estrazione e la valutazione dei suoni cardiaci fetali, dal segnale fonocardiografico fetale. Per ottenere dati di riferimento sulla co-contrazione dei muscoli dell’arto inferiore durante il cammino adulto e pediatrico è stata utilizzata la Statistical Gait Analysis (SGA), tecnica recente in grado di fornire una caratterizzazione statistica del cammino, calcolando i parametri spaziali-temporali mediante l’analisi di centinaia di passi di uno stesso soggetto durante il cammino.Gait analysis is the systematic study of human locomotion. A central part of gait analysis is represented by surface electromyography (sEMG). The walking control is played by lower limb muscles, and in particular by lower limb muscular co-contraction. Muscular co-contraction is the concomitant recruitment of antagonist muscles crossing a joint. In healthy subjects, co-contraction occurs to achieve a homogeneous pressure on joint surface, preserving articular stability. In pathological individuals, the assessment of co-contraction appeared to have a key role for discriminating dysfunction conditions of the central nervous system. Different methodologies for muscular co-contraction assessment were developed. A co-contraction index (CI) based on the area computation under the curve of rectified EMG signal from antagonist muscles was developed. It provides an overall numerical index that could not be suitable to characterize dynamic task. To overcome this limitation, muscular co-contraction was assessed by overlapping linear envelopes or temporal interval where muscles superimposed. Thus, a gold standard for identifying muscle co-contraction is not available yet. The aim of the study is to perform an EMG-based analysis of muscular co-contraction by proposing a new and reliable techniques for leg-muscle co-contraction assessment in time-frequency domain and by providing normative co-contraction data during heathy adult and child walking. The proposed method, based on Wavelet transform (WT), is named CO-contraction DEtection algorithm (CODE). A further application of WT analysis is the extraction and assessment of fetal heart sounds, from fetal phonocardiography signal. In the present study, also a reference data on lower-limb-muscle co contraction was provided by means of Statistical Gait Analysis, a technique able to provide a statistical characterization of gait, by averaging spatial-temporal and sEMG-based parameters over hundreds of strides during walking

    Muscle Co-Contraction Detection in the Time&ndash;Frequency Domain

    No full text
    Background: Muscle co-contraction plays a significant role in motion control. Available detection methods typically only provide information in the time domain. The current investigation proposed a novel approach for muscle co-contraction detection in the time&ndash;frequency domain, based on continuous wavelet transform (CWT). Methods: In the current study, the CWT-based cross-energy localization of two surface electromyographic (sEMG) signals in the time&ndash;frequency domain, i.e., the CWT coscalogram, was adopted for the first time to characterize muscular co-contraction activity. A CWT-based denoising procedure was applied for removing noise from the sEMG signals. Algorithm performances were checked on synthetic and real sEMG signals, stratified for signal-to-noise ratio (SNR), and then validated against an approach based on the acknowledged double-threshold statistical algorithm (DT). Results: The CWT approach provided an accurate prediction of co-contraction timing in simulated and real datasets, minimally affected by SNR variability. The novel contribution consisted of providing the frequency values of each muscle co-contraction detected in the time domain, allowing us to reveal a wide variability in the frequency content between subjects and within stride. Conclusions: The CWT approach represents a relevant improvement over state-of-the-art approaches that provide only a numerical co-contraction index or, at best, dynamic information in the time domain. The robustness of the methodology and the physiological reliability of the experimental results support the suitability of this approach for clinical applications

    Validity of the Nintendo Wii Balance Board for the Assessment of Balance Measures in the Functional Reach Test

    No full text
    The functional reach test (FRT) is widely used for assessing dynamic balance stability in elderly and pathological subjects. Force platforms (FPs) represent a fundamental part of the instrumented FRT experimental setup due to the central role of center-of-pressure (COP) displacement in FRT analysis. Recently, the nintendo wii balance board (NBB) has been suggested as a low-cost and reliable device for ground reaction force and COP measurement in poorly dynamic motor tasks. Therefore, this paper aimed to compare NBB-COP data with those obtained from a laboratory-grade platform during FRT. Data from 48 healthy subjects were simultaneously acquired from both devices. FP-COP and NBB-COP trajectories showed a remarkable correlation in both directions (r>0.990) and low root-mean-square error values (1.14 ± 0.88 mm and 0.55 ± 0.28 mm for anterior-posterior and medial-lateral direction). Fixed biases between COP-based parameters did not exceed 2% of the FP outcomes with high consistency throughout the present measurement range (ICC consistency always >0.950). Only the COP mean velocity exhibited a tendency toward proportional errors, which can be adjusted by a calibration of NBB data. Findings of this paper confirmed the NBB validity for COP measurement in a widely used motor task as the functional reach, supporting the feasibility of NBB in research scenarios

    Antagonist thigh-muscle activity in 6-to-8-year-old children assessed by surface EMG during walking

    No full text
    Analysis of muscle co-contractions seems to be relevant in the characterization of children pathologies such as spastic cerebral palsy. The aim of the study was the quantification of thigh-muscle co-contractions during walking in healthy children. To this aim, the Statistical Gait Analysis, a recent methodology providing a statistical characterization of gait, was performed on surface EMG signals from Vastus Medialis (VM) and Lateral Hamstrings (LH) in 30 healthy 6-to-8-year-old children. Muscular co-contraction was assessed as the overlapping period between activation intervals of agonist and antagonist muscles. As in adults, VM activity occurring from terminal swing to the following loading response superimposed LH activity in the same percentage of the gait cycle. This co-contraction occurred in order to control knee joint stability during weight acceptance. It was acknowledged in the totality (100 %) of the considered strides. Concomitant activity of VM and LH was detected also in the second half of stance phase in 17.1 ± 4.8 % of the considered strides. Working VM and LH on different joints, this concomitant activity of antagonist muscles should not be considered as an actual co-contraction. Present findings provide new information on the variability of the reciprocal role of VM and LH during child walking, useful for comparison between normal and pathological walking in the clinical context and for designing future studies on maturation of gait

    Single IMU Displacement and Orientation Estimation of Human Center of Mass: A Magnetometer-Free Approach

    No full text
    In this article, a self-contained procedure to estimate the vertical, medial–lateral, and anterior–posterior displacement of a single sacrum-worn inertial measurement unit (IMU) is presented, which can be related to the human body center of mass (CoM) displacement during treadmill walking through an adaptation of the sacral marker method. Furthermore, a magnetometer-free custom sensor-fusion algorithm for orientation estimation is proposed alongside a practical alignment procedure to refer relative IMU orientation estimation to a ground-fixed reference frame. Twelve healthy subjects performed two trials of treadmill walking at 3, 4, and 5 km/h for 150 s, with a sacrum-worn IMU. Orientation and displacement estimations were then compared with those obtained from an optoelectronic measurement system. Roll, pitch, and yaw angles showed root mean square error (RMSE) lower than 2° for walking trials at 3, 4, and 5 km/h, with Pearson’s correlation coefficient higher than 0.90 for each angle. Displacement accuracy was evaluated in terms of peak-to-trough distances and RMSE. Mean errors resulted lower than 1 mm for each axis of interest and for each gait speed, with RMSE not higher than 2.5 mm. The proposed off-line algorithm can be used in low-budget and infrastructure-free environments, to achieve reliable CoM displacement estimation during cyclic activities such as treadmill walking

    Surface-EMG analysis for the quantification of thigh muscle dynamic co-contractions during normal gait

    No full text
    The research purpose was to quantify the co-contraction patterns of quadriceps femoris (QF) vs. hamstring muscles during free walking, in terms of onset-offset muscular activation, excitation intensity, and occurrence frequency. Statistical gait analysis was performed on surface-EMG signals from vastus lateralis (VL), rectus femoris (RF), and medial hamstrings (MH), in 16315 strides walked by 30 healthy young adults. Results showed full superimpositions of MH with both VL and RF activity from terminal swing, 80 to 100% of gait cycle (GC), to the successive loading response (≈0–15% of GC), in around 90% of the considered strides. A further superimposition was detected during the push-off phase both between VL and MH activation intervals (38.6 ± 12.8% to 44.1 ± 9.6% of GC) in 21.9 ± 13.6% of strides, and between RF and MH activation intervals (45.9 ± 5.3% to 50.7 ± 9.7 of GC) in 32.7 ± 15.1% of strides. These findings led to identify three different co-contractions among QF and hamstring muscles during able-bodied walking: in early stance (in ≈90% of strides), in push-off (in 25–30% of strides) and in terminal swing (in ≈90% of strides). The co-contraction in terminal swing is the one with the highest levels of muscle excitation intensity. To our knowledge, this analysis represents the first attempt for quantification of QF/hamstring muscles co-contraction in young healthy subjects during normal gait, able to include the physiological variability of the phenomenon
    corecore