97 research outputs found

    Downregulation and Prognostic Performance of MicroRNA 224 Expression in Prostate Cancer

    Get PDF
    The extensive use of prostate-specific antigen as a general prostate cancer biomarker has introduced the hazards of overdiagnosis and overtreatment. Recent studies have revealed the immense biomarker capacity of microRNAs (miRNAs) in prostate cancer. The aim of this study was to analyze the expression pattern of miR-224, a cancer-related miRNA, in prostate tumors and investigate its clinical utility

    Loss of miR-378 in prostate cancer, a common regulator of KLK2 and KLK4, correlates with aggressive disease phenotype and predicts the short-term relapse of the patients

    Get PDF
    A large number of prostate cancer (PCa) patients receive treatment without significant benefits, strengthening the need for accurate prognosis, which can be supported by the study of miRNAs. In silico specificity analysis was performed for the identification of miRNAs able to regulate KLK2 and KLK4 expression. Total RNA was extracted from prostate tissues obtained from PCa and benign prostate hyperplasia patients. Thereafter, RNA was polyadenylated and reverse transcribed to cDNA, which was used for qPCR analysis. miR-378 was predicted to target both KLK2 and KLK4 and downregulated levels detected in PCa patients (p = 0.050). The reduction of miR-378 was correlated with higher Gleason score (p = 0.018), larger diameter tumors (p = 0.034), and elevated serum PSA (p = 0.006). Regarding prognosis, miR-378 was able to improve risk stratification according to Gleason score or tumor stage, while higher risk to recur highlighted for the patients expressing lower miR-378 levels. Finally, the loss of miR-378 was able to predict the short-term relapse of ‘high’- and ‘very high’- recurrence-risk patients, independent of Gleason score, tumor stage, PSA, and age as indicated by Kaplan-Meier survival curves (p = 0.030) and multivariate Cox regression analysis (p = 0.018). In conclusion, loss of miR-378 expression increases the risk for PCa progression and relapse, despite active treatment

    Aseptic Meningitis with Urinary Retention: A Case Report

    Get PDF
    Introduction. Aseptic meningitis is serious inflammation of the meninges caused by agents including viruses, non-viral pathogens, non-infectious conditions and chemicals. Case Presentation. This study concerns the case of a 16-year-old healthy Greek female with persistent fever, mild headache and acute urinary retention, secondary to aseptic meningitis. Physical examination revealed no distinct signs of meningeal irritation. The urinary bladder was palpable, painless and over-distended. Serology carried out for common viruses was as follows: CMV IgG (−), CMV IgM (−), HSV IgG (−), HSV IgM (+), VZ IgG (+), VZ IgM (−), EBV IgG (−) and EBV IgM (+). During recovery in hospital, three trials of removing a urinary catheter were carried out; during the first two attempts the patient was unable to urinate and had a loss of bladder sensation. On the third attempt the patient had modest bladder perception but she left a post-voiding residual, and was instructed to perform bladder self-catheterization. Seven days after being discharged the patient underwent a full recovery. Conclusion. There are few reports concerning aseptic meningitis together with acute urinary retention. A number of these cases concern so-called “meningitis-retention syndrome,” which implies an underlying CNS mechanism, while others concerned an underlying peripheral nervous system mechanism

    One More Bottleneck towards Biomarker Validation and Clinical Implementation

    Get PDF
    ELISA is the main approach for the sensitive quantification of protein biomarkers in body fluids and is currently employed in clinical laboratories for the measurement of clinical markers. As such, it also constitutes the main methodological approach for biomarker validation and further qualification. For the latter, specific assay performance requirements have to be met, as described in respective guidelines of regulatory agencies. Even though many clinical ELISA assays in serum are regularly used, ELISA clinical applications in urine are significantly less. The scope of our study was to evaluate ELISA assay analytical performance in urine for a series of potential biomarkers for bladder cancer, as a first step towards their large scale clinical validation. Seven biomarkers (Secreted protein acidic and rich in cysteine, Survivin, Slit homolog 2 protein, NRC-Interacting Factor 1, Histone 2B, Proteinase-3 and Profilin-1) previously described in the literature as having differential expression in bladder cancer were included in the study. A total of 11 commercially available ELISA tests for these markers were tested by standard curve analysis, assay reproducibility, linearity and spiking experiments. The results show disappointing performance with coefficients of variation>20% for the vast majority of the tests performed. Only 3 assays (for Secreted protein acidic and rich in cysteine, Survivin and Slit homolog 2 protein) passed the accuracy thresholds and were found suitable for further application in marker quantification. These results collectively reflect the difficulties in developing urine-based ELISA assays of sufficient analytical performance for clinical application, presumably attributed to the urine matrix itself and/or presence of markers in various isoforms

    The role of CXC-chemokine receptor CXCR2 and suppressor of cytokine signaling-3 (SOCS-3) in renal cell carcinoma

    Get PDF
    BACKGROUND: Chemokine receptor signaling pathways are implicated in the pathobiology of renal cell carcinoma (RCC). However, the clinical relevance of CXCR2 receptor, mediating the effects of all angiogenic chemokines, remains unclear. SOCS (suppressor of cytokine signaling)-3 is a negative regulator of cytokine-driven responses, contributing to interferon-α resistance commonly used to treat advanced RCC with limited information regarding its expression in RCC. METHODS: In this study, CXCR2 and SOCS-3 were immunohistochemically investigated in 118 RCC cases in relation to interleukin (IL)-6 and (IL)-8, their downstream transducer phosphorylated (p-)STAT-3, and VEGF expression, being further correlated with microvascular characteristics, clinicopathological features and survival. In 30 cases relationships with hypoxia-inducible factors, i.e. HIF-1a, p53 and NF-ÎșΒ (p65/RelA) were also examined. Validation of immunohistochemistry and further investigation of downstream transducers, p-JAK2 and p-c-Jun were evaluated by Western immunoblotting in 5 cases. RESULTS: Both CXCR2 and IL-8 were expressed by the neoplastic cells their levels being interrelated. CXCR2 strongly correlated with the levels of HIF-1a, p53 and p65/RelA in the neoplastic cells. Although SOCS-3 was simultaneously expressed with p-STAT-3, its levels tended to show an inverse relationship with p-JAK-2 and p-c-Jun in Western blots and were positively correlated with HIF-1a, p53 and p65/p65/RelA expression. Neither CXCR2 nor SOCS-3 correlated with the extent of microvascular network. IL-8 and CXCR2 expression was associated with high grade, advanced stage and the presence/number of metastases but only CXCR2 adversely affected survival in univariate analysis. Elevated SOCS-3 expression was associated with progression, the presence/number of metastasis and shortened survival in both univariate and multivariate analysis. CONCLUSIONS: Our findings implicate SOCS-3 overexpression in RCC metastasis and biologic aggressiveness advocating its therapeutic targeting. IL-8/CXCR2 signaling also contributes to the metastatic phenotype of RCC cells but appears of lesser prognostic utility. Both CXCR2 and SOCS-3 appear to be related to transcription factors induced under hypoxia

    Laparoscopic pyeloplasty for ureteropelvic junction obstruction of the lower moiety in a completely duplicated collecting system: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>There are only a few reports on laparoscopic pyeloplasty in kidney abnormalities and only one case for laparoscopic pyeloplasty in a duplicated system. Increasing experience in laparoscopic techniques allows proper treatment of such anomalies. However, its feasibility in difficult cases with altered kidney anatomy such as that of duplicated renal pelvis still needs to be addressed.</p> <p>Case presentation</p> <p>We present a case of a 22-year-old white Caucasian female patient with ureteropelvic junction obstruction of the lower ureter of a completely duplicated system that was managed with laparoscopic pyeloplasty. Crossing vessels were identified and transposed. The procedure was carried out successfully and the patient's symptoms subsided. Follow-up studies demonstrated complete resolution of the obstruction.</p> <p>Conclusion</p> <p>Since laparoscopic pyeloplasty is still an evolving procedure, its feasibility in complex cases of kidney anatomic abnormalities is herein further justified.</p

    Proteomics analysis of bladder cancer invasion: targeting EIF3D for therapeutic intervention

    Get PDF
    Patients with advanced bladder cancer have poor outcomes, indicating a need for more efficient therapeutic approaches. This study characterizes proteomic changes underlying bladder cancer invasion aiming for the better understanding of disease pathophysiology and identification of drug targets. High resolution liquid chromatography coupled to tandem mass spectrometry analysis of tissue specimens from patients with non-muscle invasive (NMIBC, stage pTa) and muscle invasive bladder cancer (MIBC, stages pT2+) was conducted. Comparative analysis identified 144 differentially expressed proteins between analyzed groups. These included proteins previously associated with bladder cancer and also additional novel such as PGRMC1, FUCA1, BROX and PSMD12, which were further confirmed by immunohistochemistry. Pathway and interactome analysis predicted strong activation in muscle invasive bladder cancer of pathways associated with protein synthesis e.g. eIF2 and mTOR signaling. Knock-down of eukaryotic translation initiation factor 3 subunit D (EIF3D) (overexpressed in muscle invasive disease) in metastatic T24M bladder cancer cells inhibited cell proliferation, migration, and colony formation in vitro and decreased tumor growth in xenograft models. By contrast, knocking down GTP-binding protein Rheb (which is upstream of EIF3D) recapitulated the effects of EIF3D knockdown in vitro, but not in vivo. Collectively, this study represents a comprehensive analysis of NMIBC and MIBC providing a resource for future studies. The results highlight EIF3D as a potential therapeutic target
    • 

    corecore