10 research outputs found
SOLVING THE RADIO LINK FREQUENCY ASSIGNMENT PROBLEM WITH BOLTZMANN MACHINE
Neural network models that became well known and popular in the 80's have been successfully
applied to solve tasks in several domains. These systems seem to offer fast and robust
solutions for several difficult problems. The comparison of the results often shows similar
achievements for neural networks and conventional methods. There is nothing surprising
in it, if we consider that the different types of artificial neural systems accomplish the
same or similar procedures as the different search algorithms and other methods. Most of
the neural networks realize a modification of previously known algorithms on an intrinsic
parallel system. Although the underlying methods are similar. the parallel structure and
the nonlinear processing elements offer us a new, more efficient method.
In this paper we present how to map a constraint satisfaction problem to achieve
fast, optimal or near optimal solution. The application task, which has been solved, is the
Radio Link Frequency Assignment Problem (RLFAP). In this problem we have to assign
frequencies from a finite domain to several radio connections in such a way that the result
should meet numerous constraints.
The first section briefly describes the neural network model we have used to solve
the problem. The second part introduces the RFLAP task in more detail. In the following
two sections first we show a possible method to map the problem to the neural network
and after this we present and evaluate the achieved results. In the fifth part we finish the
paper with some conclusions
RendszermodellezĂ©s mĂ©rĂ©si adatokbĂłl, hibrid-neurális megközelĂtĂ©s = System modelling from measurement data: hybrid-neural approach
A kutatás cĂ©lja mĂ©rĂ©si adatok alapján törtĂ©nĹ‘ rendszermodellezĂ©si eljárások kidolgozása Ă©s vizsgálata volt, kĂĽlönös tekintettel a nemlineáris rendszerek modellezĂ©sĂ©re. A kutatás során többfĂ©le megközelĂtĂ©st alkalmaztunk: egyrĂ©szt a rendszermodellezĂ©si feladatok megoldásánál a lineáris rendszerekre kidolgozott eljárásokbĂłl indultunk ki nemlineáris hatásokat is figyelembe vĂ©ve, másrĂ©szt fekete doboz megközelĂtĂ©seket alkalmaztunk, ahol elsĹ‘dlegesen input-output adatokbĂłl törtĂ©nik a modell konstrukciĂł. Az elĹ‘bbi megközelĂtĂ©s kĂĽlönösen gyengĂ©n nemlineáris rendszerek modellezĂ©sĂ©nĂ©l tűnik járhatĂł Ăştnak, ahol a gyengĂ©n nemlineáris rendszereket, mint nemlineárisan torzĂtott lineáris rendszereket tekintjĂĽk. A nemlineáris torzĂtások hatásának megĂ©rtĂ©sĂ©re egy teljes elmĂ©letet dolgoztunk ki. A fekete doboz modellezĂ©snĂ©l általános modell-struktĂşrákbĂłl indulunk ki, melyek paramĂ©tereit a rendelkezĂ©sre állĂł mĂ©rĂ©si adatok felhasználásával, tanulással határozhatjuk meg. Ekkor az alapvetĹ‘ kĂ©rdĂ©sek a megfelelĹ‘ kiindulĂł adatbázis kialakĂtására Ă©s az adatokkal kapcsolatos problĂ©mákra (zajos adatok, kiugrĂł adatok, inkonzisztens adatok, redundáns adatok, stb.) irányultak, továbbá arra hogy hogyan lehet a fekete doboz modellstruktĂşra komplexitását kĂ©zben tartani Ă©s az adatokon tĂşl meglĂ©vĹ‘ egyĂ©b informáciĂł hatĂ©kony figyelembevĂ©telĂ©t biztosĂtani. A fekete doboz modellezĂ©snĂ©l neuronhálĂłkat Ă©s szupport vektor gĂ©peket vettĂĽnk figyelembe Ă©s a minĂ©l kisebb modell-komplexitás elĂ©rĂ©sĂ©re törekedtĂĽnk. | The goal of the research was to develop and analyse system modelling procedures, especially for modelling non-linear systems. To reach the goal different approaches were applied. One approach is to use procedures developed for linear system modelling, where nonlinear effects are taken into consideration. The other approach applied is black box modelling, where model-construction is mainly based on input-output data. The first approach proved to be successful especially for the modelling of weakly non-linear systems, where these systems are considered as linear ones with the presence of nonlinear distortion. To understand nonlinear distortions a whole theory has been developed. For black box modelling the starting point was the use of certain general model-structures, where the parameters of these structures are determined by training using measurement data. The most relevant questions in this case are related to the construction of data base, and the problems of quality of the available data (noisy data, missing data, outliers, inconsistent data, redundant data, etc.), A further important goal was to find proper ways to utilise additional knowledge and at the same time to reduce model complexity. For black box modelling some special neural network architectures and support vector machines were considered
Tanulmányok a magyar menedzsmenttudomány 20. századi történetéről
Az Országos Tudományos Kutatási Alapprogramok támogatásával működĹ‘ kutatĂłcsoportunk azt a cĂ©lt tűzte ki maga elĂ©, hogy a 20. századi magyar vezetĂ©s- Ă©s szervezĂ©studomány törtĂ©netĂ©t dolgozza fel, beágyazva azt a korszak társadalom- Ă©s gazdaságtörtĂ©netĂ©be. E komplex feladat teljesĂtĂ©se során interdiszciplináris műhelyĂĽnkben közgazdász Ă©s törtĂ©nĂ©sz kollĂ©gák dolgoznak egyĂĽtt a kĂ©rdĂ©skör feltárásán.
Jelen kötet kutatĂłi közössĂ©gĂĽnk munkájának elsĹ‘ eredmĂ©nyeit tartalmazza, a tanulmányok a 20. századi magyar vezetĂ©s- Ă©s szervezĂ©studomány egyes rĂ©szkĂ©rdĂ©seit elemzik, elmĂ©leti Ă©s gyakorlati problĂ©mákkal egyaránt foglalkozva. SzándĂ©kunk szerint mindez fontos lĂ©pĂ©st jelent a diszciplĂna törtĂ©netĂ©nek átfogĂł bemutatása felĂ©, melyet a szintetizálás igĂ©nyĂ©vel tudományos projektĂĽnk vĂ©gĂ©re tervezĂĽnk megvalĂłsĂtani. BĂzunk benne, hogy kutatásunk eredmĂ©nyei által nem csupán e tudományterĂĽletrĹ‘l tudunk meg többet, de alaposabb ismereteket szerezhetĂĽnk gazdaság Ă©s politika, gazdaság Ă©s társadalom változĂł magyarországi viszonyárĂłl is a vizsgált idĹ‘szakban
Tudásalapú információkinyerés: az IKF projekt
The Internet has become the leading information delivery medium in our days, yet it represents a huge, heterogeneous and distributed network from the point of view of information retrieval. Numerous software systems have appeared in the past years to support the automated information retrieval processes, applying useful information and knowledge retrieval techniques. Nevertheless, the core services of these systems do not provide real knowledge representation methods. The aim of our research is to design and develop a complete information and knowledge management system that applies integrated state-of-the-art knowledge intensive techniques. The research is part of the IKF project at the Department of Measurement and Information Systems of the Budapest University of Technology and Economics (BUTE) aims to analyze, design and implement a new intelligent knowledge-warehousing environment, allowing advanced knowledge management and decision support. The development is targeted towards specific financial application domain. This paper intends to provide a short review of knowledge-based information retrieval and extraction, and knowledge presentation technologies through the brief discussion of the project and the realized application. First, we present the architecture and the main features of the complete knowledge-based retrieval system. Then we focus on two major subjects: the document retrieval and information extraction system as well as the ontology-based knowledge management services. We also introduce some related topics briefly, such as structured information extraction with web wrappers, XML, and conceptualization with ontologies. Besides theory, we show some experimental results of the realized software systems.Az elektronikusan hozzáfĂ©rhetĹ‘ hatalmas dokumentumgyűjtemĂ©nyek szövegeinek gĂ©pi feldolgozása, informáciĂłkinyerĂ©se rendkĂvĂĽl fontos, de nagyon összetett problĂ©ma. A könyvtártudomány hagyományos mĂłdszereit kiegĂ©szĂtve ezen a tĂ©ren a tudásalapĂş megoldások hozhatnak áttörĂ©st. Egy konkrĂ©t projekt bemutatásával ezt az Ăşj terĂĽletet tekintjĂĽk át