4,632 research outputs found

    Delay in diabetic retinopathy screening increases the rate of detection of referable diabetic retinopathy

    Get PDF
    Aims - To assess whether there is a relationship between delay in retinopathy screening after diagnosis of Type 2 diabetes and level of retinopathy detected. Methods - Patients were referred from 88 primary care practices to an English National Health Service diabetic eye screening programme. Data for screened patients were extracted from the primary care databases using semi-automated data collection algorithms supplemented by validation processes. The programme uses two-field mydriatic digital photographs graded by a quality assured team. Results - Data were available for 8183 screened patients with diabetes newly diagnosed in 2005, 2006 or 2007. Only 163 with Type 1 diabetes were identified and were insufficient for analysis. Data were available for 8020 with newly diagnosed Type 2 diabetes. Of these, 3569 were screened within 6 months, 2361 between 6 and 11 months, 1058 between 12 and 17 months, 366 between 18 and 23 months, 428 between 24 and 35 months, and 238 at 3 years or more after diagnosis. There were 5416 (67.5%) graded with no retinopathy, 1629 (20.3%) with background retinopathy in one eye, 753 (9.4%) with background retinopathy in both eyes and 222 (2.8%) had referable diabetic retinopathy. There was a significant trend (P = 0.0004) relating time from diagnosis to screening detecting worsening retinopathy. Of those screened within 6 months of diagnosis, 2.3% had referable retinopathy and, 3 years or more after diagnosis, 4.2% had referable retinopathy. Conclusions - The rate of detection of referable diabetic retinopathy is elevated in those who were not screened promptly after diagnosis of Type 2 diabetes

    Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States

    Get PDF
    Several lineages of influenza A viruses (IAV) currently circulate in North American pigs. Genetic diversity is further increased by transmission of IAV between swine and humans and subsequent evolution. Here, we characterized the genetic and antigenic evolution of contemporary swine H1N1 and H1N2 viruses representing clusters H1-ι (1A.1), H1-β (1A.2), H1pdm (1A.3.3.2), H1-γ (1A.3.3.3), H1-δ1 (1B.2.2), and H1-δ2 (1B.2.1) currently circulating in pigs in the United States. The δ1-viruses diversified into two new genetic clades, H1-δ1a (1B.2.2.1) and H1-δ1b (1B.2.2.2), which were also antigenically distinct from the earlier H1-δ1-viruses. Further characterization revealed that a few key amino acid changes were associated with antigenic divergence in these groups. The continued genetic and antigenic evolution of contemporary H1 viruses might lead to loss of vaccine cross-protection that could lead to significant economic impact to the swine industry, and represents a challenge to public health initiatives that attempt to minimize swine-to-human IAV transmission

    Photonic band mixing in linear chains of optically coupled micro-spheres

    Full text link
    The paper deals with optical excitations arising in a one-dimensional chain of identical spheres due optical coupling of whispering gallery modes (WGM). The band structure of these excitations depends significantly on the inter-mixing between WGMs characterized by different values of angular quantum number, ll. We develop a general theory of the photonic band structure of these excitations taking these effects into account and applied it to several cases of recent experimental interest. In the case of bands originating from WQMs with the angular quantum number of the same parity, the calculated dispersion laws are in good qualitative agreement with recent experiment results. Bands resulting from hybridization of excitations resulting from whispering gallery modes with different parity of ll exhibits anomalous dispersion properties characterized by a gap in the allowed values of \emph{wave numbers} and divergence of group velocity.Comment: RevTex, 28 pages, 7 Figure

    Microscopic dynamics of thin hard rods

    Full text link
    Based on the collision rules for hard needles we derive a hydrodynamic equation that determines the coupled translational and rotational dynamics of a tagged thin rod in an ensemble of identical rods. Specifically, based on a Pseudo-Liouville operator for binary collisions between rods, the Mori-Zwanzig projection formalism is used to derive a continued fraction representation for the correlation function of the tagged particle's density, specifying its position and orientation. Truncation of the continued fraction gives rise to a generalised Enskog equation, which can be compared to the phenomenological Perrin equation for anisotropic diffusion. Only for sufficiently large density do we observe anisotropic diffusion, as indicated by an anisotropic mean square displacement, growing linearly with time. For lower densities, the Perrin equation is shown to be an insufficient hydrodynamic description for hard needles interacting via binary collisions. We compare our results to simulations and find excellent quantitative agreement for low densities and qualtitative agreement for higher densities.Comment: 21 pages, 6 figures, v2: clarifications and improved readabilit

    Detecting non-Markovian plasmonic band gaps in quantum dots using electron transport

    Full text link
    Placing a quantum dot close to a metal nanowire leads to drastic changes in its radiative decay behavior because of evanescent couplings to surface plasmons. We show how two non-Markovian effects, band-edge and retardation, could be observed in such a system. Combined with a quantum dot p-i-n junction, these effects could be readout via current-noise measurements. We also discuss how these effects can occur in similar systems with restricted geometries, like phononic cavities and photonic crystal waveguides. This work links two previously separate topics: surface-plasmons and current-noise measurements.Comment: 8 page

    Force on a neutral atom near conducting microstructures

    Get PDF
    We derive the non-retarded energy shift of a neutral atom for two different geometries. For an atom close to a cylindrical wire we find an integral representation for the energy shift, give asymptotic expressions, and interpolate numerically. For an atom close to a semi-infinite halfplane we determine the exact Green's function of the Laplace equation and use it derive the exact energy shift for an arbitrary position of the atom. These results can be used to estimate the energy shift of an atom close to etched microstructures that protrude from substrates.Comment: 7 pages, 5 figure

    Quantum Optics with Surface Plasmons

    Get PDF
    We describe a technique that enables strong, coherent coupling between individual optical emitters and guided plasmon excitations in conducting nano-structures at optical frequencies. We show that under realistic conditions, optical emission can be almost entirely directed into the plasmon modes. As an example, we describe an application of this technique involving efficient generation of single photons on demand, in which the plasmon is efficiently out-coupled to a dielectric waveguide.Comment: 11 pages, 3 figure

    Can a charged ring levitate a neutral, polarizable object? Can Earnshaw's Theorem be extended to such objects?

    Get PDF
    Stable electrostatic levitation and trapping of a neutral, polarizable object by a charged ring is shown to be theoretically impossible. Earnshaw's Theorem precludes the existence of such a stable, neutral particle trap.Comment: 11 pages, 1 figur

    The Incredible Years Autism Spectrum and Language Delays Parent program: A pragmatic, feasibility randomized controlled trial

    Get PDF
    Behavior problems in children with autism spectrum disorders (ASD) are common and particularly stressful for parents. This study aimed to examine the feasibility of delivering a parenting program in existing services, and the feasibility of conducting a future large‐scale Randomized Controlled Trial evaluation of the effectiveness of the intervention. Parents of children aged 3–8 years with a diagnosis of ASD, or strongly suspected ASD were eligible to participate. A multicenter, pragmatic, feasibility randomized controlled trial was conducted in four specialist children's services in Wales. Families were randomly assigned to receive the Incredible Years® Autism Spectrum and Language Delays (IY‐ASLD) parent program immediately or to a wait‐list, treatment as usual control condition. IY‐ASLD sessions were delivered once a week for 12 weeks. The primary outcomes related to feasibility (recruitment, retention, fidelity, and acceptability). Preliminary outcome analyses were conducted using covariance models controlling for study site and baseline scores. From October 5 to December 19, 2016, 58 families were randomized, 29 to IY‐ASLD and 29 to control. Three parents did not attend any sessions while 19 (73%) completed the program. Fidelity of delivery was high (88%), as was satisfaction with the program. Fifty‐three (91%) completed the follow‐up measures. All 95% CIs for effect sizes included zero in exploratory outcome analyses. This study supports the feasibility of delivering the IY‐ASLD in existing services with good levels of acceptability and fidelity evident. A larger randomized controlled trial is required to examine the effectiveness of the program. Autism Res 2019. © 2019 International Society for Autism Research, Wiley Periodicals, Inc

    On the Possibility of Measuring the Abraham Force using Whispering Gallery Modes

    Full text link
    Critical experimental tests of the time-dependent Abraham force in phenomenological electrodynamics are scarce. In this paper we analyze the possibility of making use of intensity-modulated whispering gallery modes in a microresonator for this purpose. Systems of this kind appear attractive, as the strong concentration of electromagnetic fields near the rim of the resonator serves to enhance the Abraham torque exerted by the field. We analyze mainly spherical resonators, although as an introductory step we consider also the cylinder geometry. The order of magnitude of the Abraham torques are estimated by inserting reasonable values for the various input parameters. As expected, the predicted torques turn out to be very small, although probably not beyond any reach experimentally. Our main idea is essentially a generalization of the method used by G. B. Walker et al. [Can. J. Phys. 53, 2577] for low-frequency fields, to the optical case.Comment: 6 pages, no figures. Minor typos corrected, acknowledgment added. To appear in Phys. Rev.
    • …
    corecore