The paper deals with optical excitations arising in a one-dimensional chain
of identical spheres due optical coupling of whispering gallery modes (WGM).
The band structure of these excitations depends significantly on the
inter-mixing between WGMs characterized by different values of angular quantum
number, l. We develop a general theory of the photonic band structure of
these excitations taking these effects into account and applied it to several
cases of recent experimental interest. In the case of bands originating from
WQMs with the angular quantum number of the same parity, the calculated
dispersion laws are in good qualitative agreement with recent experiment
results. Bands resulting from hybridization of excitations resulting from
whispering gallery modes with different parity of l exhibits anomalous
dispersion properties characterized by a gap in the allowed values of
\emph{wave numbers} and divergence of group velocity.Comment: RevTex, 28 pages, 7 Figure