37 research outputs found

    Effects of host migration, diversity and aquaculture on sea lice threats to Pacific salmon populations

    No full text
    Animal migrations can affect disease dynamics. One consequence of migration common to marine fish and invertebrates is migratory allopatry—a period of spatial separation between adult and juvenile hosts, which is caused by host migration and which prevents parasite transmission from adult to juvenile hosts. We studied this characteristic for sea lice (Lepeophtheirus salmonis and Caligus clemensi) and pink salmon (Oncorhynchus gorbuscha) from one of the Canada's largest salmon stocks. Migratory allopatry protects juvenile salmon from L. salmonis for two to three months of early marine life (2–3% prevalence). In contrast, host diversity facilitates access for C. clemensi to juvenile salmon (8–20% prevalence) but infections appear ephemeral. Aquaculture can augment host abundance and diversity and increase parasite exposure of wild juvenile fish. An empirically parametrized model shows high sensitivity of salmon populations to increased L. salmonis exposure, predicting population collapse at one to five motile L. salmonis per juvenile pink salmon. These results characterize parasite threats of salmon aquaculture to wild salmon populations and show how host migration and diversity are important factors affecting parasite transmission in the oceans

    Reproductive biology of the Antarctic “sea pen” Malacobelemnon daytoni (Octocorallia, Pennatulacea, Kophobelemnidae)

    Get PDF
    The reproductive biology of the sea pen Malacobelemnon daytoni was studied at Potter Cove, South Shetland Islands, where it is one of the dominant species in shallow waters. Specimens collected at 15–22 m depth were examined by histological analysis. M. daytoni is gonochoristic and exhibited a sex ratio of 1:1. Oocyte sizes (>300 µm) and the absence of embryos or newly developed larvae in the colonies suggest that this species can have lecithotrophic larvae and experience external fertilization. This life strategy is in line with other members of the group and supports the hypothesis that this could be a phylogenetically fixed trait for pennatulids. It was observed that oocytes were generated by gastrodermic tissue and released to the longitudinal canal. Thereafter, they migrate along the canal until they reach maturity and are released by autozooids at the top of the colonies. This striking feature has not yet been reported for other pennatulaceans. Mature oocytes were observed from colonies of 15 mm in length, suggesting that sexual maturity can be reached rapidly. This is contrary to what is hypothesized for the vast majority of Antarctic benthic invertebrates, namely that rates of activities associated with development, reproduction and growth are almost universally very slow. This strategy may also explain the ecological success of M. daytoni in areas with high ice impact as in the shallow waters of Potter Cove
    corecore