1,685 research outputs found

    High-resolution single-pulse studies of the Vela Pulsar

    Get PDF
    We present high-resolution multi-frequency single-pulse observations of the Vela pulsar, PSR B0833-45, aimed at studying micro-structure, phase-resolved intensity fluctuations and energy distributions at 1.41 and 2.30 GHz. We show that the micro-pulse width in pulsars has a period dependence. Like individual pulses, Vela's micro-pulses are highly elliptically polarized. There is a strong correlation between Stokes parameters V and I in the micro-structure. We show that the V/I distribution is Gaussian with a narrow width and that this width appears to be constant as a function of pulse phase. The phase-resolved intensity distributions of I are best fitted with log-normal statistics. Extra emission components, i.e.``bump'' and ``giant micro-pulses'', discovered by Johnston et al.(2001) are also present at 2.3 GHz. The bump component seems to be an extra component superposed on the main pulse profile but does not appear periodically. The giant micro-pulses are time-resolved and have significant jitter in their arrival times. Their flux density distribution is best fitted by a power-law, indicating a link between these features and ``classical'' giant pulses as observed for the Crab pulsar, (PSR B0531+21), PSR B1937+21 and PSR B1821-24. We find that Vela contains a mixture of emission properties representing both ``classical'' properties of radio pulsars (e.g. micro-structure, high degree of polarization, S-like position angle swing, orthogonal modes) and features which are most likely related to high-energy emission (e.g. extra profile components, giant micro-pulses). It hence represents an ideal test case to study the relationship between radio and high-energy emission in significant detail.Comment: accepted for publication in MNRAS (11 pages, 10 figures

    DSPSR: Digital Signal Processing Software for Pulsar Astronomy

    Full text link
    DSPSR is a high-performance, open-source, object-oriented, digital signal processing software library and application suite for use in radio pulsar astronomy. Written primarily in C++, the library implements an extensive range of modular algorithms that can optionally exploit both multiple-core processors and general-purpose graphics processing units. After over a decade of research and development, DSPSR is now stable and in widespread use in the community. This paper presents a detailed description of its functionality, justification of major design decisions, analysis of phase-coherent dispersion removal algorithms, and demonstration of performance on some contemporary microprocessor architectures.Comment: 15 pages, 10 figures, to be published in PAS

    The Big Picture of a Career Behind the Microscope: Life Lessons from a Thirty-Something Woman in Medicine

    Get PDF
    I consider myself fortunate to pursue a career whose steps were laid out before me. The umbrella of medicine is broad, however, and many major life events occur between the time a young person starts college and a career truly materializes. Looking back on the past fifteen years since graduating high school, I’ve learned more about people and the world around me than any single topic taught in a classroom. From one detour after finishing my undergraduate degree, to another after graduating medical school, my path to becoming a pathologist was not the direct one I envisioned. Since graduating from NSU, I am at the cusp of my career in pathology, am married, and have started a family. I’m in the middle of my first fellowship in cytology, and anticipating the start of my second fellowship in breast pathology across the country at Mayo Clinic in Minnesota. I’m due with my second child any day, and supporting a husband whose career is just as demanding. I’m still learning, but know that the period of time spent in college is developmentally as important as early childhood. That time is truly a crossroads and the few years spent pursuing an undergraduate degree should be a time of exploration, not procrastination. Join me as I elaborate on truths like “30 is not the new 20”, “you can have it all, just not all at once”, and “nothing in the world takes the place of persistence”. I look forward to meeting you

    Enhanced heat flow in the hydrodynamic-collisionless regime

    Full text link
    We study the heat conduction of a cold, thermal cloud in a highly asymmetric trap. The cloud is axially hydrodynamic, but due to the asymmetric trap radially collisionless. By locally heating the cloud we excite a thermal dipole mode and measure its oscillation frequency and damping rate. We find an unexpectedly large heat conduction compared to the homogeneous case. The enhanced heat conduction in this regime is partially caused by atoms with a high angular momentum spiraling in trajectories around the core of the cloud. Since atoms in these trajectories are almost collisionless they strongly contribute to the heat transfer. We observe a second, oscillating hydrodynamic mode, which we identify as a standing wave sound mode.Comment: Sumitted to Phys. Rev. Letters, 4 pages, 4 figure

    Analysis of Photoassociation Spectra for Giant Helium Dimers

    Full text link
    We perform a theoretical analysis to interpret the spectra of purely long-range helium dimers produced by photoassociation (PA) in an ultra-cold gas of metastable helium atoms. The experimental spectrum obtained with the PA laser tuned closed to the 23S1↔23P02^3S_1\leftrightarrow 2^3P_0 atomic line has been reported in a previous Letter. Here, we first focus on the corrections to be applied to the measured resonance frequencies in order to infer the molecular binding energies. We then present a calculation of the vibrational spectra for the purely long-range molecular states, using adiabatic potentials obtained from perturbation theory. With retardation effects taken into account, the agreement between experimental and theoretical determinations of the spectrum for the 0u+0_u^+ purely long-range potential well is very good. The results yield a determination of the lifetime of the 23P2^3P atomic state

    Reaching the hydrodynamic regime in a Bose-Einstein condensate by suppression of avalanche

    Full text link
    We report the realization of a Bose-Einstein condensate (BEC) in the hydrodynamic regime. The hydrodynamic regime is reached by evaporative cooling at a relative low density suppressing the effect of avalanches. With the suppression of avalanches a BEC containing 120.10^6 atoms is produced. The collisional opacity can be tuned from the collisionless regime to a collisional opacity of more than 3 by compressing the trap after condensation. In the collisional opaque regime a significant heating of the cloud at time scales shorter than half of the radial trap period is measured. This is direct proof that the BEC is hydrodynamic.Comment: Article submitted for Phys. Rev. Letters, 6 figure

    Radio Astronomical Polarimetry and Point-Source Calibration

    Full text link
    A mathematical framework is presented for use in the experimental determination of the polarimetric response of observatory instrumentation. Elementary principles of linear algebra are applied to model the full matrix description of the polarization measurement equation by least-squares estimation of non-linear, scalar parameters. The formalism is applied to calibrate the center element of the Parkes Multibeam receiver using observations of the millisecond pulsar, PSR J0437-4715, and the radio galaxy, 3C 218 (Hydra A).Comment: 8 pages, 4 figures, to be published in ApJ

    Radio astronomical polarimetry and phase-coherent matrix convolution

    Get PDF
    A new phase-coherent technique for the calibration of polarimetric data is presented. Similar to the one-dimensional form of convolution, data are multiplied by the response function in the frequency domain. Therefore, the system response may be corrected with arbitrarily high spectral resolution, effectively treating the problem of bandwidth depolarization. As well, the original temporal resolution of the data is retained. The method is therefore particularly useful in the study of radio pulsars, where high time resolution and polarization purity are essential requirements of high-precision timing. As a demonstration of the technique, it is applied to full-polarization baseband recordings of the nearby millisecond pulsar, PSR J0437-4715.Comment: 8 pages, 4 figures, accepted for publication in Ap
    • 

    corecore