450 research outputs found

    THE CO.TR.I.S SYSTEM: TOWARDS A SMARTER COASTAL TRANSPORT NETWORK FOR SMART ISLANDS

    Get PDF
    The Coastal Transport Information System (Co.Tr.I.S) is a multifunction information system that is developed for the effective design of coastal transportation lines. The system incorporates several subsystems which include the models, tools, and techniques that support the design of improved coastal networks. Co.Tr.I.S main aim is to support any decision making process of the involved players (Ministry, Maritime companies, Local Authorities, Travel Agencies, Passengers, etc) regarding the improvement & the optimal use of a coastal transport network. Co.Tr.I.S data retrieval, analysis, visualization, network design & decision support can accelerate the very slow (currently annual in Aegean) rate of coastal transport network update/upgrade procedures, and, create smarter network implementations that may adapt online on the various demand or requirement changes or updates. Connections, transportation, mobility, as well as port automation are some of the key factors for the “smartification” of entire islands especially in an archipelago like the Aegean Sea. In this work, we present the network design optimization functionality of Co.Tr.I.S, the various optimization stages, the Genetic Algorithm (GA) implementations and its potential to propose a better network design based on each user preferences. A sample case study is given to show its smartness & adaptability to each user needs and, finally, a discussion follows on how it could be complemented by emerging smart technologies for smarter islands

    Primary pigmented nodular adrenocortical disease presenting with a unilateral adrenocortical nodule treated with bilateral laparoscopic adrenalectomy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Primary pigmented nodular adrenocortical disease is a rare cause of adrenocorticotropic hormone-independent Cushing's syndrome. We report an uncommon primary pigmented nodular adrenocortical disease case presenting with a unilateral adrenocortical nodule and provide a brief overview of the existing literature.</p> <p>Case presentation</p> <p>A 27-year-old Caucasian woman was admitted to our Department with adrenocorticotropic hormone-independent Cushing's syndrome. Its cause was initially considered a left adrenocortical adenoma based on computer tomography imaging. The patient underwent left laparoscopic adrenalectomy and histological examination revealed pigmented micronodular adrenal hyperplasia. Evaluation for the presence of Carney complex was negative. Six months later recurrence of hypercortisolism was documented and a right laparoscopic adrenalectomy was performed further establishing the diagnosis of primary pigmented nodular adrenocortical disease. After a nine-year follow-up there is no evidence of residual disease.</p> <p>Conclusions</p> <p>Even though primary pigmented nodular adrenocortical disease is a rare cause of Cushing's syndrome, it should be included in the differential diagnosis of adrenocorticotropic hormone-independent Cushing's syndrome, especially because adrenal imaging can be misleading mimicking other adrenocortical diseases. Bilateral laparoscopic adrenalectomy is the preferred treatment in these subjects.</p

    Topological photonics with scattering media

    Full text link
    Scattering media, being ubiquitous in nature and critically important for assessments (e.g., biological tissues), are often considered as nuisance in optics. Here we show that it is not always the case and scattering media could be essential in providing elements of topological photonics. We demonstrate that topological darkness can be realised in the presence of scattering media due to the transverse nature of electromagnetic waves and the hairy ball theorem. We describe realizations of topological darkness in a scattering medium comprising composite gold nanostructures produced by a low-cost technique of laser structuring of thin metal films. Our results can be useful for a variety of tasks, including topological nanophotonics, optical label-free biosensing, and biomedical photonics

    Spatially selective reversible charge carrier density tuning in WS_2 monolayers via photochlorination

    Get PDF
    Chlorine-doped tungsten disulfide monolayer (1L-WS_2) with tunable charge carrier concentration has been realized by pulsed laser irradiation of the atomically thin lattice in a precursor gas atmosphere. This process gives rise to a systematic shift of the neutral exciton peak towards lower energies, indicating reduction of the crystal's electron density. The capability to progressively tune the carrier density upon variation of the exposure time is demonstrated; this indicates that the Fermi level shift is directly correlated to the respective electron density modulation due to the chlorine species. Notably, this electron withdrawing process enabled the determination of the trion binding energy of the intrinsic crystal, found to be as low as 20 meV, in accordance to theoretical predictions. At the same time, it is found that the effect can be reversed upon continuous wave laser scanning of the monolayer in air. Scanning auger microscopy (SAM) and x-ray photoelectron spectroscopy (XPS) are used to link the actual charge carrier doping to the different chlorine configurations in the monolayer lattice. The spectroscopic analyses, complemented by density functional theory calculations, reveal that chlorine physisorption is responsible for the carrier density modulation induced by the pulsed laser photochemical reaction process. Such bidirectional control of the Fermi level, coupled with the capability offered by lasers to process at pre-selected locations, can be advantageously used for spatially resolved doping modulation in 1L-WS_2 with micrometric resolution. This method can also be extended for the controllable doping of other TMD monolayers

    smart sustainable islands vs smart sustainable cities

    Get PDF
    This paper has several aims: a) the presentation of a critical analysis of the terms "smart sustainable cities" and "smart sustainable islands" b) the presentation of a number of principles towards to the development methodological framework of concepts and actions, in a form of a manual and actions guide, for the smartification and sustainability of islands. This kind of master plan is divided in thematic sectors (key factors) which concern the insular municipalities c) the creation of an island's smartification and sustainability index d) the first steps towards the creation of a portal for the presentation of our smartification actions manual, together with relative resources, smart applications examples, and, in the near future the first results of our index application in a number of Greek islands and e) the presentation of some proposals of possible actions towards their sustainable development and smartification for the municipalities - islands of Paros and Antiparos in Greece, as case studies

    GEOGRAPHIC OBJECTS: THEORY OR TECHNOLOGY DRIVEN?

    Get PDF
    This article aims to compare the geo-graphic (spatial) objects in 2D (planar objects) proposed by CON.G.O.O. and ISO standards, and the ability of a number of GIS software to handle them. The results achieved so far showed that the actual technical possibilities are not always sufficient to support the complex spatial objects proposed by CON.G.O.O

    The pediatric glucocorticoid toxicity index

    Get PDF
    Objectives: To develop a Pediatric glucocorticoid toxicity index (pGTI), a standardized, weighted clinical outcome assessment that measures change in glucocorticoid (GC) toxicity over time. Methods: Fourteen physician experts from 7 subspecialties participated. The physician experts represented multiple subspecialties in which GCs play a major role in the treatment of inflammatory disease: nephrology, rheumatology, oncology, endocrinology, genetics, psychiatry, and maternal-fetal medicine. Nine investigators were from Canada, Europe, or New Zealand, and 5 were from the United States. Group consensus methods and multi-criteria decision analysis were used. The pGTI is an aggregate assessment of GC toxicities that are common, important, and dynamic. These toxicities are organized into health domains graded as minor, moderate, or major and are weighted according to severity. The relative weights were derived by group consensus and multi-criteria decision analysis using the 1000MindsTM software platform. Two quantitative scores comprise the overall toxicity profile derived from pGTI data: (1) the Cumulative Worsening Score; and (2) the Aggregate Improvement Score. The pGTI also includes a qualitative, unweighted record of GC side-effects known as the Damage Checklist, which documents less common toxicities that, although potentially severe, are unlikely to change with varying GC dosing. Results: One hundred and seven (107) toxicity items were included in the pGTI and thirty-two (32) in the Damage Checklist. To assess the degree to which the pGTI corresponds to expert clinical judgement, the investigators ranked 15 cases by clinical judgement from highest to lowest GC toxicity. Expert rankings were then compared to case ranking by the pGTI, yielding excellent agreement (weighted kappa 0.86). The pGTI was migrated to a digital environment following its development and initial validation. The digital platform is designed to ensure ease-of-use in the clinic, rigor in application, and accuracy of scoring. Clinic staff enter vital signs, laboratory results, and medication changes relevant to pGTI scoring. Clinicians record findings for GC myopathy, skin toxicity, mood dysfunction, and infection. The pGTI algorithms then apply the weights to these raw data and calculate scores. Embedded logic accounts for the impact of age- and sex-related reference ranges on several health domains: blood pressure, lipid metabolism, and bone mineral density. Other algorithms account for anticipated changes in the height Z-scores used in the growth domain, thereby addressing a concern unique to GC toxicity in children. The Damage Checklist ensures comprehensive measurement of GC toxicity but does not contribute to pGTI scoring, because the scored domains emphasize manifestations of GC toxicity that are likely to change over the course of a trial. Conclusions: We describe the development and initial evaluation of a weighted, composite toxicity index for the assessment of morbidity related to GC use in children and adolescents. Developing the pGTI digital platform was essential for performing the nuanced calculations necessary to ensure rigor, accuracy, and ease-of-use in both clinic and research settings
    • …
    corecore