155 research outputs found

    Astronomical time scale for the Middle Oxfordian to Late Kimmeridgian in the Swiss and French Jura Mountains

    Get PDF
    Detailed investigation of facies and sedimentary structures reveals that, during the Middle Oxfordian to Late Kimmeridgian, the shallow carbonate platform of the Swiss and French Jura Mountains recorded high-frequency sea-level fluctuations quite faithfully. The cyclostratigraphic analysis within the established biostratigraphic and sequence-chronostratigraphic framework implies that the resulting hierarchically stacked depositional sequences formed in tune with the orbital cycles of precession (20 kyr) and eccentricity (100 and 400 kyr). The astronomical time scale presented here is based on the correlation of 19 platform sections and 4 hemipelagic sections from south-eastern France where good biostratigraphic control is available. The cyclostratigraphic interpretation suggests that the interval between sequence boundaries Ox4 and Kim1 (early Middle Oxfordian to earliest Kimmeridgian) lasted 3.2 myr and that the Kimmeridgian sensu gallico has a duration of 3.2 to 3.3 myr. The astronomical time scale proposed here is compared to time scales established by other authors in other regions and the discrepancies are discussed. Despite these discrepancies, there is a potential to estimate the durations of ammonite zones and depositional sequences more precisely and to better evaluate the rates of sedimentary, ecological and diagenetic processe

    A comparison of recent and fossil large, high-spired gastropods and their environments: the Nopparat Thara tidal flat in Krabi, South Thailand, versus the Swiss Kimmeridgian carbonate platform

    Get PDF
    High-spired nerineoid gastropods are abundant in the tropical Kimmeridgian carbonate deposits of the Swiss Jura Mountains. Understanding the mode of life of this extinct group of gastropods is crucial for palaeoenvironmental reconstructions. The knowledge on their ecology is, however, limited by the near absence of comparable large high-spired gastropods in Recent carbonate systems. Large high-spired turritellid gastropods are, however, abundant in siliciclastic-dominated environments in the tropical Indian Ocean. In order to compare the Recent and fossil environments of these two morphologically similar groups, a Recent tidal flat, where abundant turritellids occur, was studied in the National Park of Nopparat Thara in the district of Krabi, South Thailand. Ninety specimens of Turritella duplicata were measured and mapped, revealing zonations in population distribution, both parallel and perpendicular to the beach line. Attention was also paid to other faunal elements and sedimentary features. The thus-gained information on the depositional environment was then compared to a section of shallow-water carbonate deposits from the Kimmeridgian of the Swiss Jura Mountains. These are characterised by the occurrence of tidal laminites, dinosaur tracks, beach deposits and nerineoid gastropods. Especially for one succession, the faunal composition and sedimentary structures in the fossil record show intriguing similarities to those found today on the Nopparat Thara tidal flat, indicating that it formed in a comparable setting. It is therefore suggested that for some Kimmeridgian carbonate deposits, the Nopparat Thara tidal flat, although dominantly siliciclastic, represents an environmental analogu

    History of the Middle Berriasian transgression on the Jura carbonate platform: revealed by high-resolution sequence- and cyclostratigraphy (Switzerland and France)

    Get PDF
    The Middle Berriasian deposits of the Jura platform in Switzerland and France have already been well studied in terms of high-resolution sequence stratigraphy and different orders of depositional sequences (large-, medium-, and small-scale) have been defined. The hierarchical stacking pattern of the sequences and the time span represented by the investigated interval imply that sea-level fluctuations in the Milankovitch frequency band as well as differential subsidence caused the observed changes of accommodation on the Jura platform. The present study focuses on three small-scale sequences within the transgressive interval of a large-scale sequence. The initial flooding of the platform is marked by a facies change from supra- and intertidal (Goldberg Formation) to shallow-marine subtidal deposits (Pierre Châtel Formation). Detailed logging and facies analysis of 11 sections allow recognizing small environmental changes that define elementary sequences within the well-established small-scale sequences and distinguishing between autocyclic and allocyclic processes in sequence formation. It is concluded that the small-scale sequences correspond to the 100-ka orbital eccentricity cycle, while allocyclic elementary sequences formed in tune with the 20-ka precession cycle. Based on the correlation of elementary and small-scale sequences it can be shown that the Jura platform has been flooded stepwise by repeated transgressive pulses. Differential subsidence and pre-existing platform morphology further controlled sediment accumulation and distribution during the transgression. The combination of high-resolution sequence stratigraphy and cyclostratigraphy then enables the reconstruction of hypothetical palaeogeographic maps in time increments of a few ten thousand year

    Allogenic and autogenic processes combined in the formation of shallow-water carbonate sequences (Middle Berriasian, Swiss and French Jura Mountains)

    Get PDF
    Sediment production and accumulation on shallow carbonate platforms are controlled by allogenic, externally controlled processes (such as sea level, climate, and/or platform-wide subsidence patterns) as well as by autogenic factors that are inherent to the sedimentary system (such as lateral migration of sediment bodies). The challenge is to determine how and in which proportion these processes interacted to create the observed sedimentary record. Here, a case study of Middle Berriasian, shallow-marine carbonates of the Swiss and French Jura Mountains is presented. Based on vertical facies evolution and bedding surfaces, different orders of depositional sequences (elementary, small-scale, medium-scale) have been identified in the studied sections. The hierarchical stacking pattern of these sequences and the time span represented by the investigated interval imply that eustatic sea-level fluctuations in the Milankovitch frequency band were an important controlling factor. The small-scale and medium-scale sequences relate to the 100 and 400-kyr orbital eccentricity cycles, respectively. The elementary sequences are attributed to the 20-kyr precession cycle. Differential subsidence additionally produced accommodation changes. The present study focuses on one specific small-scale sequence situated at the base of the transgressive systems tract of large-scale sequence Be4, which is identified also in other European basins. This small-scale sequence has been logged in detail at eight different outcrops in the Jura Mountains. Detailed facies analysis reveals that different depositional environments (tidal flats, internal lagoons, open lagoons, carbonate sand shoals) were juxtaposed and evolved through time, often shifting position on the platform. The boundaries of the small-scale (100-kyr) sequence can be followed over the entire study area and thus must have formed through predominantly allogenic processes (eustatic sea-level fall, the effect of which was locally modified by differential subsidence). In two sections, five well-developed elementary sequences constitute the small-scale sequence. In the other sections, the identification of elementary sequences often is difficult because sedimentation was dominated by autogenic processes that overruled the influence of sea-level fluctuations. In low-energy, tidal-flat and internal-lagoonal settings, orbitally induced sea-level changes were recorded more faithfully, while high-energy shoals were mainly submitted to autogenic processes and the allogenic signal is masked. Consequently, the studied Jura platform experienced a combination of auto- and allogenic processes, which created a complex facies mosaic and a complex stacking of depositional sequences. Nevertheless, the 100-kyr orbital signal was strong enough to create correlatable sequence boundaries. Within a 100-kyr sequence, however, the unambiguous definition of sequences related to the 20-kyr orbital cycle is often difficult and the prediction of their lateral or vertical facies evolution impossibl

    High-frequency palaeoenvironmental changes on a shallow carbonate platform during a marine transgression (Late Oxfordian, Swiss Jura Mountains)

    Get PDF
    Based on a well-established bio- and sequence-stratigraphic framework, a narrow time window in the Bimammatum ammonite zone (Late Oxfordian) is investigated in six Swiss Jura sections representing a shallow-water carbonate platform. From the detailed facies and microfacies analysis of oncoid-rich (Hauptmumienbank Member) and ooid-rich (Steinebach Member) limestones, a microfacies classification is established, depositional environments are interpreted, and a depositional model for the Swiss Jura platform is proposed. The sequence- and cyclostratigraphic interpretation has been performed for the transgressive part of the medium-scale sequence Ox6+, independently for each section, with a very high time resolution at the scale of elementary depositional sequences. The good correlation of the elementary and small-scale sequences between the six studied sections and the similar number of elementary sequences in all sections strongly suggest that allocyclic processes were involved in their formation. The hierarchically stacked depositional sequences (small-scale and elementary sequences) result from orbitally controlled sea-level changes with periodicities of 100 and 20 kyr, respectively. Thickness variations in the correlated small-scale and elementary sequences imply variable sedimentation rates, probably resulting from differential subsidence due to the activity of tectonic blocks. The tectonically controlled platform morphology contributed significantly to the general pattern of depositional environments and, combined with high-frequency sea-level fluctuations, created a complex facies distribution in time and space on the Swiss Jura carbonate platfor

    Relative sea-level change, climate, and sequence boundaries: insights from the Kimmeridgian to Berriasian platform carbonates of Mount Salève (E France)

    Get PDF
    The present study analyses the stratal architecture of the Late Jurassic (Kimmeridgian) to Early Cretaceous (Berriasian) sedimentary succession of Mount Salève (E France), and four Berriasian stratigraphic intervals containing four sequence-boundary zones reflecting lowering trends of the relative sea-level evolution. Massive Kimmeridgian limestones characterized by the presence of colonial corals appear to be stacked in an aggrading pattern. These non-bedded thick deposits, which are interpreted to have formed in balance between relative sea-level rise and carbonate accumulation, suggest a keep-up transgressive system. Above, well-bedded Tithonian-to-Berriasian peritidal carbonates reflect a general loss of accommodation. These strata are interpreted as a highstand normal-regressive unit. During the early phase of this major normal regression, the vertical repetition of upper intertidal/lower supratidal lithofacies indicates an aggrading depositional system. This is in agreement with an early stage of a highstand phase of relative sea level. The Berriasian sequence-boundary zones investigated (up to 4m thick) developed under different climatic conditions and correspond to higher-frequency, forced- and normal-regressive stages of relative sea-level changes. According to the classical sequence-stratigraphic principles, these sequence-boundary zones comprise more than one candidate surface for a sequence boundary. Three sequence-boundary zones studied in Early Berriasian rocks lack coarse siliciclastic grains, contain a calcrete crust, as well as marly levels with higher abundances of illite with respect to kaolinite, and exhibit fossilized algal-microbial laminites with desiccation polygons. These sedimentary features are consistent with more arid conditions. A sequence-boundary zone interpreted for the Late Berriasian corresponds to a coal horizon. The strata above and below this coal contain abundant quartz and marly intervals with a higher kaolinite content when compared to the illite content. Accordingly, this Late Berriasian sequence-boundary zone was formed under a more humid climate. The major transgressive-regressive cycle of relative sea level identified and the climate change from more arid to more humid conditions recognized during the Late Berriasian have been reported also from other European basins. Therefore, the Kimmeridgian to Berriasian carbonate succession of Mount Salève reflects major oceanographic and climatic changes affecting the northern margin of the Alpine Tethys ocean and thus constitutes a reliable comparative example for the analysis of other coeval sedimentary records. In addition, the stratigraphic intervals including sequence-boundary zones characterized in this study constitute potential outcrop analogues for sequence-boundary reflectors mapped on seismic profiles of subsurface peritidal carbonate successions. The detailed sedimentological analyses provided here highlight that on occasions the classical principles of sequence stratigraphy developed on seismic data are difficult to apply in outcrop. A sequence-boundary reflector when seen in outcrop may present successive subaerial exposure surfaces, which formed due to high-frequency sea-level changes that were superimposed on the longer-term trend of relative sea-level fal

    Origin of peloids in Early Cretaceous deposits, Dorset, South England

    Get PDF
    Peloids are ubiquitous components in modern and fossil carbonates. The term peloid is non-genetic because the origin of these grains and the pathways of their formation are not fully understood. Based on Berriasian material originating from Dorset, southern England, we report here on peloids that result from the more or less in-place breakdown of previously micritized bivalve shells. The continuum from shell breakdown to peloids is documented by petrography and observation by scanning electron microscopy. The identical elemental composition of peloids and micritized shells confirms the petrographic observation and interpretation. Bivalve shells that were previously entirely micritized appear to be the preferential source for the formation of peloids. Obviously, the micritization weakened the shells, facilitating their breakdown and abrasion. This result identifies the fragmentation of micritized shells as a process leading to the formation of distinct peloids, adding to the categories of peloids recognized to date. Mold, mud, and microbial peloids observed in the studied sections and documented herein are distinct from peloids derived from bivalve shell

    Oncoid growth and distribution controlled by sea-level fluctuations and climate (Late Oxfordian, Swiss Jura Mountains)

    Get PDF
    Abundant lagoonal oncoids occur in the Late Oxfordian Hauptmumienbank Member of the Swiss Jura Mountains. Four oncoid types are observed in the studied sections and classified according to the oncoid surface morphology, the structure and composition of the cortex, and the texture and fauna of the encasing sediment. Micrite-dominated oncoids (types 1 and 2) have a smooth surface. Type 1 has a rather homogeneous cortex and occurs in moderate-energy environments. Type 2 presents continuous or discontinuous micritic laminae. It is associated with a low-diversity fauna and occurs in high-energy facies. Bacinella and Lithocodium oncoids (types 3 and 4) display a lobate surface. They are dominated by microencrusters (Bacinella irregularis and Lithocodium aggregatum) and are found in low-energy facies. The stratigraphic and spatial distribution of these oncoid types shows a correlation with the sequence-stratigraphic evolution of the studied interval, and thus with relative sea-level fluctuations. It can be shown that these sea-level fluctuations were controlled by orbital cycles with 100- and 20-kyr periodicities. At the scale of 100- and 20-kyr sequences, types 1 and 2 oncoids are preferentially found around sequence boundaries and in transgressive deposits, while types 3 and 4 oncoids are preferentially found around maximum floodings and in highstand deposits. This implies that changes of water energy and water depth were direct controlling factors. Discrepancies in oncoid distribution point to additional controlling factors. Platform morphology defines the distribution and type of the lagoon where the oncoids flourished. A low accumulation rate is required for oncoid growth. Additionally, humidity changes in the hinterland act on the terrigenous influx, which modifies water transparency and trophic level and thus plays a role in the biotic composition and diversity in the oncoid corte

    Carbon- and oxygen-isotope records of palaeoenvironmental and carbonate production changes in shallow-marine carbonates (Kimmeridgian, Swiss Jura)

    Get PDF
    Carbon- and oxygen-isotope ratios are commonly used to correlate shallow- and deep-marine successions. Carbon- and oxygen-isotope analyses were performed on bulk-carbonate samples from two Kimmeridgian sections of the Swiss Jura platform in order to correlate them with biostratigraphically well-dated coeval sections in the adjacent basin. On the platform, a general decrease in δ13C and δ18O values from the base to the top of the studied interval is measured, whereas time-equivalent pelagic-hemipelagic carbonates record an increase in carbon- and oxygen-isotope ratios. Moreover, the measured δ13C and δ18O values are generally lower than those indicated for the Kimmeridgian open ocean and show high-frequency variations superimposed on the general trend. Samples were screened for diagenetic alteration using optical and cathodoluminescence petrography and coupled carbon- and oxygen-isotope and trace-element analyses. Some observations favour a role for diagenetic alteration, but isotopic and elemental trends as well as sedimentological evidence suggest that the more negative values of δ13C and δ18O relative to Kimmeridgian seawater are also due to local environmental conditions. High-frequency changes in δ18O and δ13C values most likely result from variations in salinity and carbonate production and accumulation rates. These variations were produced by different water masses that were isolated from the open ocean and developed their own geochemical signatures. Repeated isolation was induced by high-frequency sea-level fluctuations and helped by irregular platform morphology. Consequently, carbon- and oxygen-isotope records in shallow-marine carbonates can be used for stratigraphic correlation only if their origin is well know

    The Early to Middle Triassic continental-marine transition of NW Bulgaria:sedimentology, palynology and sequence stratigraphy

    Get PDF
    Sedimentary facies and cycles of the Triassic continental–marine transition of NW Bulgaria are documented in detail from reference sections along the Iskar river gorge between the villages of Tserovo and Opletnya. The depositional environments evolved from anastomosing and meandering river systems in the Petrohan Terrigenous Group to mixed fluvial and tidal settings in the Svidol Formation, and to peritidal and shallow-marine conditions in the Opletnya Member of the Mogila Formation. For the first time, the palynostratigraphic data presented here allow for dating the transitional interval and for the precise identification of a major sequence boundary between the Petrohan Terrigenous Group and the Svidol Formation (Iskar Carbonate Group). This boundary most probably corresponds to the major sequence boundary Ol4 occurring in the upper Olenekian of the Tethyan realm and thus enables interregional correlation. The identification of regionally traceable sequence boundaries based on biostratigraphic age control is a first step towards a more accurate stratigraphic correlation and palaeogeographic interpretation of the Early to early Middle Triassic in NW Bulgaria
    • …
    corecore