40 research outputs found

    Review of Human Cognitive Performance in Spaceflight

    Get PDF
    Human space exploration is inherently hazardous, particularly for lon g duration (LD) missions (22 days or longer). Maintenance of cognitive functioning is essential, but flight environments pose numerous pote ntial risks to the brain and cognitive performance (eg, radiation, to xins, chronic stress, sleep deprivation, hypercarbia, fluid shifts, h ormone imbalances, and injury). There have been persistent anecdotal reports of cognitive deficits during missions, but an up?-to-date rev iew of the evidence for such changes has remained unavailable. Method s: We identified and reviewed English language publications found via electronic searches in PubMed, PsycInfo, Inspec, the NASA Technical Report Server, and the Defense Technical Information Center, plus rec ursive searches of publication bibliographies. Search terms included the word cognition, cognitive, or performance along with spaceflight, flight, mission, or closely related terms. Results: Inter?-study variability precluded meta?-analysis. Some 32 published studies involving cognitive assessment during spaceflight were identified, involving a total of 110 participants (mean: 3.4 participants per study). The lo ngest?-duration study spanned 438 days, with six additional studies i nvolving flight durations of 90 days, and 11 more studies involved fl ight durations exceeding 21 days. The available evidence failed to st rongly support or refute the existence of cognitive deficits in LD sp aceflight, in part due to inadequate power or control conditions. Evi dence of increased variability in cognitive performance during spacef light, both within and between individuals, was common. Discussion: T hese results represent a negative finding based on small numbers of s ubjects for any given cognitive function. The increased variability within and (particularly) between individuals highlights the potential danger of generalizing from case studies. A mismatch therefore remain s between anecdotal reports describing generalized cognitive slowing, attention and memory problems during missions and the experimental e vidence supporting such deficits. Since a major justification for man ned spaceflight rests with the cognitive flexibility of humans, addit ional studies and further analysis of existing operational data appea rs warranted

    Depth Sensitivity and Source-Detector Separations for Near Infrared Spectroscopy Based on the Colin27 Brain Template

    Get PDF
    Understanding the spatial and depth sensitivity of non-invasive near-infrared spectroscopy (NIRS) measurements to brain tissue–i.e., near-infrared neuromonitoring (NIN) – is essential for designing experiments as well as interpreting research findings. However, a thorough characterization of such sensitivity in realistic head models has remained unavailable. In this study, we conducted 3,555 Monte Carlo (MC) simulations to densely cover the scalp of a well-characterized, adult male template brain (Colin27). We sought to evaluate: (i) the spatial sensitivity profile of NIRS to brain tissue as a function of source-detector separation, (ii) the NIRS sensitivity to brain tissue as a function of depth in this realistic and complex head model, and (iii) the effect of NIRS instrument sensitivity on detecting brain activation. We found that increasing the source-detector (SD) separation from 20 to 65 mm provides monotonic increases in sensitivity to brain tissue. For every 10 mm increase in SD separation (up to ∼45 mm), sensitivity to gray matter increased an additional 4%. Our analyses also demonstrate that sensitivity in depth (S) decreases exponentially, with a “rule-of-thumb” formula S = 0.75*0.85depth. Thus, while the depth sensitivity of NIRS is not strictly limited, NIN signals in adult humans are strongly biased towards the outermost 10–15 mm of intracranial space. These general results, along with the detailed quantitation of sensitivity estimates around the head, can provide detailed guidance for interpreting the likely sources of NIRS signals, as well as help NIRS investigators design and plan better NIRS experiments, head probes and instruments

    Near-Infrared Neuroimaging with NinPy

    Get PDF
    There has been substantial recent growth in the use of non-invasive optical brain imaging in studies of human brain function in health and disease. Near-infrared neuroimaging (NIN) is one of the most promising of these techniques and, although NIN hardware continues to evolve at a rapid pace, software tools supporting optical data acquisition, image processing, statistical modeling, and visualization remain less refined. Python, a modular and computationally efficient development language, can support functional neuroimaging studies of diverse design and implementation. In particular, Python's easily readable syntax and modular architecture allow swift prototyping followed by efficient transition to stable production systems. As an introduction to our ongoing efforts to develop Python software tools for structural and functional neuroimaging, we discuss: (i) the role of non-invasive diffuse optical imaging in measuring brain function, (ii) the key computational requirements to support NIN experiments, (iii) our collection of software tools to support NIN, called NinPy, and (iv) future extensions of these tools that will allow integration of optical with other structural and functional neuroimaging data sources. Source code for the software discussed here will be made available at www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html

    Regional Brain Morphometry Predicts Memory Rehabilitation Outcome after Traumatic Brain Injury

    Get PDF
    Cognitive deficits following traumatic brain injury (TBI) commonly include difficulties with memory, attention, and executive dysfunction. These deficits are amenable to cognitive rehabilitation, but optimally selecting rehabilitation programs for individual patients remains a challenge. Recent methods for quantifying regional brain morphometry allow for automated quantification of tissue volumes in numerous distinct brain structures. We hypothesized that such quantitative structural information could help identify individuals more or less likely to benefit from memory rehabilitation. Fifty individuals with TBI of all severities who reported having memory difficulties first underwent structural MRI scanning. They then participated in a 12 session memory rehabilitation program emphasizing internal memory strategies (I-MEMS). Primary outcome measures (HVLT, RBMT) were collected at the time of the MRI scan, immediately following therapy, and again at 1-month post-therapy. Regional brain volumes were used to predict outcome, adjusting for standard predictors (e.g., injury severity, age, education, pretest scores). We identified several brain regions that provided significant predictions of rehabilitation outcome, including the volume of the hippocampus, the lateral prefrontal cortex, the thalamus, and several subregions of the cingulate cortex. The prediction range of regional brain volumes were in some cases nearly equal in magnitude to prediction ranges provided by pretest scores on the outcome variable. We conclude that specific cerebral networks including these regions may contribute to learning during I-MEMS rehabilitation, and suggest that morphometric measures may provide substantial predictive value for rehabilitation outcome in other cognitive interventions as well

    Surgical Capabilities for Exploration and Colonization Space Flight - An Exploratory Symposium

    Get PDF
    Identify realistic and achievable pathways for surgical capabilities during exploration and colonization space operations and develop a list of recommendations to the NASA Human Research Program to address challenges to developing surgical capabilities

    SpaceDock: A Performance Task Platform for Spaceflight Operations

    Get PDF
    Preliminary evidence during both short- and long-duration spaceflight indicates that perceptual-motor coordination changes occur and persist in-flight. However, there is presently no in-flight method for evaluating astronaut performance on mission-critical tasks such as docking. We present a portable platform we have developed for attempting and evaluating docking, and describe the results of a pilot study wherein flight novices learned the docking task. Methods: A dual-joystick, six degrees of freedom platform-called SpaceDock-was developed to enable portable, adaptable performance testing in a spaceflight operations setting. Upon this platform, a simplified docking task was created, involving a constant rate of approach towards a docking target and requiring the user to correct translation in two dimensions and attitude orientation along one dimension (either pitch or roll). Ten flight naive subjects performed the task over a 45 min period and all joystick inputs and timings were collected, from which we could successfully reconstruct travel paths, input profiles and relative target displacements. Results: Subjects exhibited significant improvements in docking over the course of the experiment. Learning to compensate for roll-alterations was robust, whereas compensation for pitch-alterations was not in evidence in this population and relatively short training period. Conclusion: The SpaceDock platform can provide a novel method for training and testing subjects, on a spaceflight-relevant task, and can be used to examine behavioral learning, strategy use, and has been adapted for use in brain imaging experiments

    Performance on the Robotics On-Board Trainer (ROBoT-r) Spaceflight Simulation During Acute Sleep Deprivation

    Get PDF
    Exploration of deep space poses many challenges. Mission support personnel will not be immediately available to assist crewmembers performing complex operations on future long-duration exploration operations. Consequently, it is imperative that crewmembers have objective, reliable, and non-invasive metrics available to aid them in determining their fitness for duty prior to engaging in potentially dangerous tasks. The Robotics On-Board Trainer (ROBoT) task is NASA’s platform for training astronauts to perform docking and grappling maneuvers. It is regularly used by crewmembers during spaceflight for refresher training. The operational ROBoT system, however, does not record data. Thus, a research version of ROBoT, called ROBoT-r, was developed so that operationally relevant data could be mined to provide feedback to crewmembers. We investigated whether ROBoT-r metrics would change according to sleep loss and circadian phase in a 28-h laboratory-based sleep deprivation study. Overall, participants showed improvement over time despite sleep loss, indicating continued learning. Performance on the psychomotor vigilance task (PVT) followed an expected profile, with reduced performance across the night. These findings suggest that individuals may be able to temporarily compensate for sleep loss to maintain performance on complex, novel tasks. It is possible that some ROBoT-r metrics may be sensitive to sleep loss after longer bouts of wakefulness or after individuals have habituated to the task. Studies with additional participants and extended pre-training on the ROBoT-r task should be conducted to disentangle how brain activity may change as individuals learn and habituate to complex tasks during sleep loss

    Acute Mountain Sickness Symptoms Depend on Normobaric versus Hypobaric Hypoxia

    Get PDF
    Acute mountain sickness (AMS), characterized by headache, nausea, fatigue, and dizziness when unacclimatized individuals rapidly ascend to high altitude, is exacerbated by exercise and can be disabling. Although AMS is observed in both normobaric (NH) and hypobaric hypoxia (HH), recent evidence suggests that NH and HH produce different physiological responses. We evaluated whether AMS symptoms were different in NH and HH during the initial stages of exposure and if the assessment tool mattered. Seventy-two 8 h exposures to normobaric normoxia (NN), NH, or HH were experienced by 36 subjects. The Environmental Symptoms Questionnaire (ESQ) and Lake Louise Self-report (LLS) were administered, resulting in a total of 360 assessments, with each subject answering the questionnaire 5 times during each of their 2 exposure days. Classification tree analysis indicated that symptoms contributing most to AMS were different in NH (namely, feeling sick and shortness of breath) compared to HH (characterized most by feeling faint, appetite loss, light headedness, and dim vision). However, the differences were not detected using the LLS. These results suggest that during the initial hours of exposure (1) AMS in HH may be a qualitatively different experience than in NH and (2) NH and HH may not be interchangeable environments

    Nourishing the brain on deep space missions: nutritional psychiatry in promoting resilience

    Get PDF
    The grueling psychological demands of a journey into deep space coupled with ever-increasing distances away from home pose a unique problem: how can we best take advantage of the benefits of fresh foods in a place that has none? Here, we consider the biggest challenges associated with our current spaceflight food system, highlight the importance of supporting optimal brain health on missions into deep space, and discuss evidence about food components that impact brain health. We propose a future food system that leverages the gut microbiota that can be individually tailored to best support the brain and mental health of crews on deep space long-duration missions. Working toward this goal, we will also be making investments in sustainable means to nourish the crew that remains here on spaceship Earth
    corecore