41 research outputs found

    Effects of the equilibrium model on impurity transport in tokamaks

    Get PDF
    Gyrokinetic simulations of ion temperature gradient mode and trapped electron mode driven impurity transport in a realistic tokamak geometry are presented and compared with results using simplified geometries. The gyrokinetic results, obtained with the GENE code in both linear and non-linear modes are compared with data and analysis for a dedicated impurity injection discharge at JET. The impact of several factors on heat and particle transport is discussed, lending special focus to tokamak geometry and rotational shear. To this end, results using s-alpha and concentric circular equilibria are compared with results with magnetic geometry from a JET experiment. To further approach experimental conditions, non-linear gyrokinetic simulations are performed with collisions and a carbon background included. The impurity peaking factors, computed by finding local density gradients corresponding to zero particle flux, are discussed. The impurity peaking factors are seen to be reduced by a factor of ~2 in realistic geometry compared with the simplified geometries, due to a reduction of the convective pinch. It is also seen that collisions reduce the peaking factor for low-Z impurities, while increasing it for high charge numbers, which is attributed to a shift in the transport spectra towards higher wavenumbers with the addition of collisions. With the addition of roto-diffusion, an overall reduction of the peaking factors is observed, but this decrease is not sufficient to explain the flat carbon profiles seen at JET.Comment: 19 pages, 9 figures (17 subfigures

    Fluid and gyrokinetic modelling of particle transport in plasmas with hollow density profiles

    Get PDF
    Hollow density profiles occur in connection with pellet fuelling and L to H transitions. A positive density gradient could potentially stabilize the turbulence or change the relation between convective and diffusive fluxes, thereby reducing the turbulent transport of particles towards the center, making the fuelling scheme inefficient. In the present work, the particle transport driven by ITG/TE mode turbulence in regions of hollow density profiles is studied by fluid as well as gyrokinetic simulations. The fluid model used, an extended version of the Weiland transport model, Extended Drift Wave Model (EDWM), incorporates an arbitrary number of ion species in a multi-fluid description, and an extended wavelength spectrum. The fluid model, which is fast and hence suitable for use in predictive simulations, is compared to gyrokinetic simulations using the code GENE. Typical tokamak parameters are used based on the Cyclone Base Case. Parameter scans in key plasma parameters like plasma β, R/LT , and magnetic shear are investigated. It is found that β in particular has a stabilizing effect in the negative R/Ln region, both nonlinear GENE and EDWM show a decrease in inward flux for negative R/Ln and a change of direction from inward to outward for positive R/Ln . This might have serious consequences for pellet fuelling of high β plasmas

    Particle transport in ion and electron scale turbulence

    Get PDF
    Micro turbulent modes have important and non-trivial effects on transport in tokamaks. This paper deals with transport of main ions and impurities in ion and electron scale turbulence, driven by ion and electron temperature gradients, and trapped electrons. Using the gyrokinetic Vlasov code GENE, results are obtained from both nonlinear and quasi-linear simulations. The transport properties are quantified by calculating the gradient of zero particle flux for steady state in source free regions of the plasma. The results are compared and contrasted with results obtained using a computationally efficient fluid model. Of particular interest are conditions of steep gradients, relevant to e.g. transport barrier conditions. Further, results from a simple s–α geometry are compared with results obtained using a JET-like magnetic equilibrium, and the effects on transport investigated

    Performance of distributed multiscale simulations

    Get PDF
    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption

    HF-EPR, Raman, UV/VIS Light Spectroscopic, and DFT Studies of the Ribonucleotide Reductase R2 Tyrosyl Radical from Epstein-Barr Virus

    Get PDF
    Epstein-Barr virus (EBV) belongs to the gamma subfamily of herpes viruses, among the most common pathogenic viruses in humans worldwide. The viral ribonucleotide reductase small subunit (RNR R2) is involved in the biosynthesis of nucleotides, the DNA precursors necessary for viral replication, and is an important drug target for EBV. RNR R2 generates a stable tyrosyl radical required for enzymatic turnover. Here, the electronic and magnetic properties of the tyrosyl radical in EBV R2 have been determined by X-band and high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy recorded at cryogenic temperatures. The radical exhibits an unusually low g1-tensor component at 2.0080, indicative of a positive charge in the vicinity of the radical. Consistent with these EPR results a relatively high C-O stretching frequency associated with the phenoxyl radical (at 1508 cm−1) is observed with resonance Raman spectroscopy. In contrast to mouse R2, EBV R2 does not show a deuterium shift in the resonance Raman spectra. Thus, the presence of a water molecule as a hydrogen bond donor moiety could not be identified unequivocally. Theoretical simulations showed that a water molecule placed at a distance of 2.6 Å from the tyrosyl-oxygen does not result in a detectable deuterium shift in the calculated Raman spectra. UV/VIS light spectroscopic studies with metal chelators and tyrosyl radical scavengers are consistent with a more accessible dimetal binding/radical site and a lower affinity for Fe2+ in EBV R2 than in Escherichia coli R2. Comparison with previous studies of RNR R2s from mouse, bacteria, and herpes viruses, demonstrates that finely tuned electronic properties of the radical exist within the same RNR R2 Ia class

    EUROfusion Integrated Modelling (EU-IM) capabilities and selected physics applications

    Get PDF
    International audienceRecent developments and achievements of the EUROfusion Code Development for Integrated Modelling project (WPCD), which aim is to provide a validated integrated modelling suite for the simulation and prediction of complete plasma discharges in any tokamak, are presented. WPCD develops generic complex integrated simulations, workflows, for physics applications, using the standardized European Integrated Modelling (EU-IM) framework. Selected physics applications of EU-IM workflows are illustrated in this paper

    EUROfusion Integrated Modelling (EU-IM) capabilities and selected physics applications

    No full text
    Recent developments and achievements of the EUROfusion Code Development for Integrated Modelling project (WPCD, follow-up of EFDA-ITM-TF), which aims at providing a validated integrated modelling suite for the simulation and prediction of complete plasma discharges in any tokamak, are presented. WPCD develops generic complex integrated simulations, workflows, for physics applications, using the standardized EU Integrated Modelling (EU-IM) framework. The integration of codes in EU-IM workflows is besides accompanied by a thorough cross-verification and, recently, by the introduction of rigorous release procedures. Among the achievements, the European TransportSimulator(ETS),hasnowreachedacapabilityequivalenttothestate-of-the-artintegrated modeling transport codes, including interchangeable physics modules for equilibrium (both fixed and free boundary), transport (interpretative analytical, neoclassical, anomalous), impurities (all ionization states), NTM, sawteeth, pellets, neutrals, Heating and Current Drive (HCD) sources including all the heating schemes (EC, NBI, IC, nuclear) and synergy effects. The core ETS has been released and deployed at JET, offering a leading tool for both interpretive transport analysis and predictive modelling of complex scenarios. Selected physics applications are presented, in particular ETS simulations of plasma density control in reactor-scale plasmas fueled with multiple pellets. A MHD stability chain was developed for the analysis of equilibria from any tokamak in the EU-IM platform; it includes a pool of interoperable high-resolution equilibrium and linear MHD stability codes. Having passed a benchmark on core and global ideal kink instabilities, the chain has been released and applied to the predictive analysis of DEMO and JT60-SA scenarios and can be straightforwardly used for interpretive runs on present devices as JET and ASDEX Upgrade. A predictive J-alpha MHD pedestal stability analysis workflow has also been developed. Routine application to sensitivity analysis of DEMO1 scenarios is performed. Furthermore, a workflow including a turbulence code and a synthetic probe was developed and applied to investigate the turbulent transport in the edge and Scrape-Off-Layer (SOL) of ASDEX Upgrade. Finally, a prototype edge workflow integrating the interaction with PFC was demonstrated

    Comparative Gyrokinetic Analysis of JET Baseline H-mode Core Plasmas with Carbon Wall and ITER-Like Wall

    No full text
    Following the change of plasma facing components at JET from a carbon wall (CW) to a metal ITER-like wall (ILW) a deterioration of global confinement has been observed for H-mode baseline experiments. The deterioration has been correlated with a degradation of pedestal confinement with lower electron temperatures at the top of the edge barrier region. In order to investigate the change in core confinement, heat transport due to Ion Temperature Gradient (ITG)/Trapped Electron Mode (TEM) turbulence is investigated using the gyrokinetic code GENE. Two pairs of CW and ILW discharges that are matched according to several global parameters are simulated at mid radius. The simulations included effects of collisions, finite β, realistic geometries, and impurities. A sensitivity study is performed with respect to the key dimensionless parameters in the matched pairs. The combined effect of the relative change in these parameters is that the ITG mode is destabilized in the ILW discharges compared to the CW discharges. This is also reflected in nonlinear simulations where the ILW discharges show higher normalized ion and electron heat fluxes and larger stiffness. The ion energy confinement time within ρ = 0.5 is found to be comparable while the electron confinement time is shorter for the ILW discharges. The core confinement in the ILW discharges is expected to improve if the edge pedestal is recovered since that would favourably change the key plasma parameters that now serve to destabilize them
    corecore