1,410 research outputs found

    Proton induced radioactivities

    Get PDF
    Results are tabulated of the radioactivities produced by 4 Mev protons in targets of 7N, 8O, 20Ca, 24Cr, 27Co, 30Zn, 34Se, 42Mo, 46Pd, 48Cd, 49In. In most cases the reactions are of the p-n type, and lead to isotopes which emit either + or - electrons. A detailed study was made of O, Zn and Se. The reaction O18(p, n)F18 (107 min.) shows a threshold at 2.56 Mev and a positron energy of 0.74 Mev in good agreement with the energy relations. The cross section for the reaction at 4 Mev is about 2×10^-25 cm^2 and there is a resonance maximum at 3.55 Mev. The cross section for the reaction O16(p, γ)F17 is 4000 times smaller. The isomeric Br80 periods (17.4 min. and 4.45 hr.) are observed in the reaction Se80(p, n)Br80. At 4 Mev the ratio of the short to long period activities for infinite bombardment is about 15 but the thresholds are at about 3.0 and 3.2 Mev, respectively. The cross section for the reaction is about 0.6×10^-26 cm^2 at 4 Mev

    An investigation of eddy-current damping of multi-stage pendulum suspensions for use in interferometric gravitational wave detectors

    Get PDF
    In this article we discuss theoretical and experimental investigations of the use of eddy-current damping for multi-stage pendulum suspensions such as those intended for use in Advanced LIGO, the proposed upgrade to LIGO (the US laser interferometric gravitational-wave observatory). The design of these suspensions is based on the triple pendulum suspension design developed for GEO 600, the German/UK interferometric gravitational wave detector, currently being commissioned. In that detector all the low frequency resonant modes of the triple pendulums are damped by control systems using collocated sensing and feedback at the highest mass of each pendulum, so that significant attenuation of noise associated with this so-called local control is achieved at the test masses. To achieve the more stringent noise levels planned for Advanced LIGO, the GEO 600 local control design needs some modification. Here we address one particular approach, namely that of using eddy-current damping as a replacement or supplement to active damping for some or all of the modes of the pendulums. We show that eddy-current damping is indeed a practical alternative to the development of very low noise sensors for active damping of triple pendulums, and may also have application to the heavier quadruple pendulums at a reduced level of damping

    Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors

    Get PDF
    Detection of gravitational waves from astrophysical sources remains one of the most challenging problems faced by experimental physicists. A significant limit to the sensitivity of future long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test mass mirrors and their suspensions. Suspension thermal noise results from mechanical dissipation in the fused silica suspension fibers suspending the test mass mirrors and is therefore an important noise source at operating frequencies between ∼10 and 30 Hz. This dissipation occurs due to a combination of thermoelastic damping, surface and bulk losses. Its effects can be reduced by optimizing the thermoelastic and surface loss, and these parameters are a function of the cross sectional dimensions of the fiber along its length. This paper presents a new apparatus capable of high resolution measurements of the cross sectional dimensions of suspension fibers of both rectangular and circular cross section, suitable for use in advanced detector mirror suspensions

    Passive-performance, analysis, and upgrades of a 1-ton seismic attenuation system

    Get PDF
    The 10m Prototype facility at the Albert-Einstein-Institute (AEI) in Hanover, Germany, employs three large seismic attenuation systems to reduce mechanical motion. The AEI Seismic-Attenuation-System (AEI-SAS) uses mechanical anti-springs in order to achieve resonance frequencies below 0.5Hz. This system provides passive isolation from ground motion by a factor of about 400 in the horizontal direction at 4Hz and in the vertical direction at 9Hz. The presented isolation performance is measured under vacuum conditions using a combination of commercial and custom-made inertial sensors. Detailed analysis of this performance led to the design and implementation of tuned dampers to mitigate the effect of the unavoidable higher order modes of the system. These dampers reduce RMS motion substantially in the frequency range between 10 and 100Hz in 6 degrees of freedom. The results presented here demonstrate that the AEI-SAS provides substantial passive isolation at all the fundamental mirror-suspension resonances

    Huddle test measurement of a near Johnson noise limited geophone

    Get PDF
    In this paper, the sensor noise of two geophone configurations (L-22D and L-4C geophones from Sercel with custom built amplifiers) was measured by performing two huddle tests. It is shown that the accuracy of the results can be significantly improved by performing the huddle test in a seismically quiet environment and by using a large number of reference sensors to remove the seismic foreground signal from the data. Using these two techniques, the measured sensor noise of the two geophone configurations matched the calculated predictions remarkably well in the bandwidth of interest (0.01 Hz–100 Hz). Low noise operational amplifiers OPA188 were utilized to amplify the L-4C geophone to give a sensor that was characterized to be near Johnson noise limited in the bandwidth of interest with a noise value of 10−11 m/Hz⎯⎯⎯⎯⎯√10−11 m/Hz at 1 Hz

    Squeezed Light for the Interferometric Detection of High Frequency Gravitational Waves

    Full text link
    The quantum noise of the light field is a fundamental noise source in interferometric gravitational wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called Standard-Quantum-Limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyze the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO600 detector with present design parameters will benefit from frequency dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO600 will still be dominated by shot-noise and improved by a factor of 10^{6dB/20dB}~2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6x10^{-23} above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency dependent squeezing by introducing an additional optical component to GEO600s signal-recycling cavity.Comment: Presentation at AMALDI Conference 2003 in Pis

    Adherence and persistence to direct oral anticoagulants in atrial fibrillation: a population-based study

    Get PDF
    Background Despite simpler regimens than vitamin K antagonists (VKAs) for stroke prevention in atrial fibrillation (AF), adherence (taking drugs as prescribed) and persistence (continuation of drugs) to direct oral anticoagulants are suboptimal, yet understudied in electronic health records (EHRs). Objective We investigated (1) time trends at individual and system levels, and (2) the risk factors for and associations between adherence and persistence. Methods In UK primary care EHR (The Health Information Network 2011–2016), we investigated adherence and persistence at 1 year for oral anticoagulants (OACs) in adults with incident AF. Baseline characteristics were analysed by OAC and adherence/persistence status. Risk factors for non-adherence and non-persistence were assessed using Cox and logistic regression. Patterns of adherence and persistence were analysed. Results Among 36 652 individuals with incident AF, cardiovascular comorbidities (median CHA2DS2VASc[Congestive heart failure, Hypertension, Age≥75 years, Diabetes mellitus, Stroke, Vascular disease, Age 65-74 years, Sex category] 3) and polypharmacy (median number of drugs 6) were common. Adherence was 55.2% (95% CI 54.6 to 55.7), 51.2% (95% CI 50.6 to 51.8), 66.5% (95% CI 63.7 to 69.2), 63.1% (95% CI 61.8 to 64.4) and 64.7% (95% CI 63.2 to 66.1) for all OACs, VKA, dabigatran, rivaroxaban and apixaban. One-year persistence was 65.9% (95% CI 65.4 to 66.5), 63.4% (95% CI 62.8 to 64.0), 61.4% (95% CI 58.3 to 64.2), 72.3% (95% CI 70.9 to 73.7) and 78.7% (95% CI 77.1 to 80.1) for all OACs, VKA, dabigatran, rivaroxaban and apixaban. Risk of non-adherence and non-persistence increased over time at individual and system levels. Increasing comorbidity was associated with reduced risk of non-adherence and non-persistence across all OACs. Overall rates of ‘primary non-adherence’ (stopping after first prescription), ‘non-adherent non-persistence’ and ‘persistent adherence’ were 3.5%, 26.5% and 40.2%, differing across OACs. Conclusions Adherence and persistence to OACs are low at 1 year with heterogeneity across drugs and over time at individual and system levels. Better understanding of contributory factors will inform interventions to improve adherence and persistence across OACs in individuals and populations

    Size-Dependent Transition to High-Dimensional Chaotic Dynamics in a Two-Dimensional Excitable Medium

    Get PDF
    The spatiotemporal dynamics of an excitable medium with multiple spiral defects is shown to vary smoothly with system size from short-lived transients for small systems to extensive chaos for large systems. A comparison of the Lyapunov dimension density with the average spiral defect density suggests an average dimension per spiral defect varying between three and seven. We discuss some implications of these results for experimental studies of excitable media.Comment: 5 pages, Latex, 4 figure

    Design of a speed meter interferometer proof-of-principle experiment

    Get PDF
    The second generation of large scale interferometric gravitational wave detectors will be limited by quantum noise over a wide frequency range in their detection band. Further sensitivity improvements for future upgrades or new detectors beyond the second generation motivate the development of measurement schemes to mitigate the impact of quantum noise in these instruments. Two strands of development are being pursued to reach this goal, focusing both on modifications of the well-established Michelson detector configuration and development of different detector topologies. In this paper, we present the design of the world's first Sagnac speed meter interferometer which is currently being constructed at the University of Glasgow. With this proof-of-principle experiment we aim to demonstrate the theoretically predicted lower quantum noise in a Sagnac interferometer compared to an equivalent Michelson interferometer, to qualify Sagnac speed meters for further research towards an implementation in a future generation large scale gravitational wave detector, such as the planned Einstein Telescope observatory.Comment: Revised version: 16 pages, 6 figure
    • …
    corecore