57 research outputs found

    YIP1 family member 4 (YIPF4) is a novel cellular binding partner of the papillomavirus E5 proteins

    Get PDF
    E5 proteins are amongst the least understood of the Human Papillomavirus (HPV) encoded gene products. They are small, membrane-integrated proteins known to modulate a number of critical host pathways associated with pathogenesis including growth factor receptor signaling and immune evasion. Their role in the virus life cycle is less clear, indicating a role in the productive stages of the life cycle. However, a mechanism for this is currently lacking. Here we describe the identification of a novel binding partner of E5, YIPF4 using yeast two-hybrid analysis. YIPF4 is also a poorly characterized membrane spanning protein. Mutagenesis studies implicated the transmembrane regions of each protein as important for their interaction. Binding to YIPF4 was found for all E5 proteins tested suggesting that this interaction may mediate a conserved E5 function. In normal human keratinocytes YIPF4 expression was down-regulated upon differentiation and this reduction was partially rescued in cells harbouring HPV. Despite the conserved nature of the interaction with E5, siRNA mediated depletion of YIPF4 failed to impede two well-characterized functions of E5, namely EGFR trafficking or HLA class I presentation. Continued studies of YIPF4 are warranted to determine its role in the PV life cycle

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation

    Molecular characterization of EGFR, PDGFRA and VEGFR2 in cervical adenosquamous carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adenosquamous carcinoma of the uterine cervix is an infrequent but aggressive subtype of cervical cancer. A better understanding of its biological behaviour is warranted to define more accurate prognosis and therapeutic targets. Currently, the blockage of receptor tyrosine kinase (RTKs) activity is an efficient therapeutic strategy for many different cancers. The objective of this study was to investigate EGFR, PDGFRA and VEGFR2 RTKs overexpression and activating gene mutations in a cohort of 30 adenosquamous carcinomas of the uterine cervix.</p> <p>Methods</p> <p>EGFR, PDGFRA and VEGFR2 immunohistochemistry was performed in all samples, followed by DNA isolation from the gross macroscopically dissection of the neoplastic area. Screening for <it>EGFR </it>(exons 18–21) and <it>PDGFRA </it>(exons 12, 14 and 18) mutations was done by PCR – single-strand conformational polymorphism (PCR-SSCP).</p> <p>Results</p> <p>Despite the presence of EGFR immunohistochemical positive reactions in 43% (13/30) of the samples, no <it>EGFR </it>activating mutations in the hotspot region (exons 18–21) were identified. A silent base substitution (CAG>CAA) in <it>EGFR </it>exon 20 at codon 787 (Q787Q) was found in 17 cases (56%). All PDGFRA immunohistochemical reactions were positive and consistently observed in the stromal component, staining fibroblasts and endothelial cells, as well as in the cytoplasm of malignant cells. No activating <it>PDGFRA </it>mutations were found, yet, several silent mutations were observed, such as a base substitution in exon 12 (CCA>CCG) at codon 567 (P567P) in 9 cases and in exon 18 (GTC>GTT) at codon 824 (V824V) in 4 cases. We also observed the presence of base substitutions in intron 14 (IVS14+3G>A and IVS14+49G>A) in two different cases, and in intron 18 (IVS18-50insA) in 4 cases. VEGFR2 positivity was observed in 22 of 30 cases (73.3%), and was significantly associated with lack of metastasis (<it>p </it>= 0.038).</p> <p>Conclusion</p> <p>This is the most extensive analysis of EGFR, PDGFRA and VEGFR2 in cervical adenosquamous carcinomas. Despite the absence of <it>EGFR </it>and <it>PDGFRA </it>activating mutations, the presence of overexpression of these three important therapeutic targets in a subset of cases may be important in predicting the sensitivity of adenosquamous carcinoma to specific anti-RTKs drugs.</p

    Organization of multiprotein complexes at cell–cell junctions

    Get PDF
    The formation of stable cell–cell contacts is required for the generation of barrier-forming sheets of epithelial and endothelial cells. During various physiological processes like tissue development, wound healing or tumorigenesis, cellular junctions are reorganized to allow the release or the incorporation of individual cells. Cell–cell contact formation is regulated by multiprotein complexes which are localized at specific structures along the lateral cell junctions like the tight junctions and adherens junctions and which are targeted to these site through their association with cell adhesion molecules. Recent evidence indicates that several major protein complexes exist which have distinct functions during junction formation. However, this evidence also indicates that their composition is dynamic and subject to changes depending on the state of junction maturation. Thus, cell–cell contact formation and integrity is regulated by a complex network of protein complexes. Imbalancing this network by oncogenic proteins or pathogens results in barrier breakdown and eventually in cancer. Here, I will review the molecular organization of the major multiprotein complexes at junctions of epithelial cells and discuss their function in cell–cell contact formation and maintenance

    Unbiased identification of T-cell receptors Targeting immunodominant peptide-MHC complexes for T-cell receptor immunotherapy.

    Get PDF
    T-cell receptor (TCR) immunotherapy uses T cells engineered with new TCRs to enable detection and killing of cancer cells. Efficacy of TCR immunotherapy depends on targeting antigenic peptides that are efficiently presented by the best-suited major histocompatibility complex (MHC) molecules of cancer cells. However, efficient strategies are lacking to easily identify TCRs recognizing immunodominant peptide-MHC (pMHC) combinations utilizing any of the six possible MHC class I alleles of a cancer cell. We generated an MHC cell library and developed a platform approach to detect, isolate, and re-express TCRs specific for immunodominant pMHCs. The platform approach was applied to identify a human papillomavirus (HPV16) oncogene E5-specific TCR, recognizing a novel, naturally processed pMHC (HLA-B*15:01) and a cytomegalovirus-specific TCR targeting an immunodominant pMHC (HLA-B*07:02). The platform provides a useful tool to isolate in an unbiased manner TCRs specific for novel and immunodominant pMHC targets for use in TCR immunotherapy
    • …
    corecore