57 research outputs found

    Tumor radio-sensitivity assessment by means of volume data and magnetic resonance indices measured on prostate tumor bearing rats

    No full text
    PURPOSE: Radiation therapy is one of the most common treatments in the fight against prostate cancer, since it is used to control the tumor (early stages), to slow its progression, and even to control pain (metastasis). Although many factors (e.g., tumor oxygenation) are known to influence treatment efficacy, radiotherapy doses and fractionation schedules are often prescribed according to the principle “one-fits-all,” with little personalization. Therefore, the authors aim at predicting the outcome of radiation therapy a priori starting from morphologic and functional information to move a step forward in the treatment customization. METHODS: The authors propose a two-step protocol to predict the effects of radiation therapy on individual basis. First, one macroscopic mathematical model of tumor evolution was trained on tumor volume progression, measured by caliper, of eighteen Dunning R3327-AT1 bearing rats. Nine rats inhaled 100% O(2) during irradiation (oxy), while the others were allowed to breathe air. Second, a supervised learning of the weight and biases of two feedforward neural networks was performed to predict the radio-sensitivity (target) from the initial volume and oxygenation-related information (inputs) for each rat group (air and oxygen breathing). To this purpose, four MRI-based indices related to blood and tissue oxygenation were computed, namely, the variation of signal intensity [Formula: see text] in interleaved blood oxygen level dependent and tissue oxygen level dependent (IBT) sequences as well as changes in longitudinal [Formula: see text] and transverse [Formula: see text] relaxation rates. RESULTS: An inverse correlation of the radio-sensitivity parameter, assessed by the model, was found with respect the [Formula: see text] (−0.65) for the oxy group. A further subdivision according to positive and negative values of [Formula: see text] showed a larger average radio-sensitivity for the oxy rats with [Formula: see text] and a significant difference in the two distributions (p < 0.05). Finally, a leave-one-out procedure yielded a radio-sensitivity error lower than 20% in both neural networks. CONCLUSIONS: While preliminary, these specific results suggest that subjects affected by the same pathology can benefit differently from the same irradiation modalities and support the usefulness of IBT in discriminating between different responses

    MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors

    No full text
    <div><p>Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT) imaging alone. In this study, we characterized a research magnetic resonance (MR) scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV) was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This novel protocol is wide-ranging and not limited to the orthotopic prostate tumor study presented in the study.</p></div

    Genome-Wide Association Analysis of Radiation Resistance in <i>Drosophila melanogaster</i>

    No full text
    <div><p>Background</p><p>Ionizing radiation is genotoxic to cells. Healthy tissue toxicity in patients and radiation resistance in tumors present common clinical challenges in delivering effective radiation therapies. Radiation response is a complex, polygenic trait with unknown genetic determinants. The <i>Drosophila</i> Genetic Reference Panel (DGRP) provides a model to investigate the genetics of natural variation for sensitivity to radiation.</p><p>Methods and Findings</p><p>Radiation response was quantified in 154 inbred DGRP lines, among which 92 radiosensitive lines and 62 radioresistant lines were classified as controls and cases, respectively. A case-control genome-wide association screen for radioresistance was performed. There are 32 single nucleotide polymorphisms (SNPs) associated with radio resistance at a nominal <i>p</i><10<sup>−5</sup>; all had modest effect sizes and were common variants with the minor allele frequency >5%. All the genes implicated by those SNP hits were novel, many without a known role in radiation resistance and some with unknown function. Variants in known DNA damage and repair genes associated with radiation response were below the significance threshold of <i>p</i><10<sup>−5</sup> and were not present among the significant hits. No SNP met the genome-wide significance threshold (<i>p</i> = 1.49×10<sup>−7</sup>), indicating a necessity for a larger sample size.</p><p>Conclusions</p><p>Several genes not previously associated with variation in radiation resistance were identified. These genes, especially the ones with human homologs, form the basis for exploring new pathways involved in radiation resistance in novel functional studies. An improved DGRP model with a sample size of at least 265 lines and ideally up to 793 lines is recommended for future studies of complex traits.</p></div

    Considerations of target surface area and the risk of radiosurgical toxicity.

    No full text
    OBJECTIVE:The goal of this study was to explore conceptual benefits of characterizing delineated target volumes based on surface area and to utilize the concept for assessing risk of therapeutic toxicity in radiosurgery. METHODS AND MATERIALS:Four computer-generated targets, a sphere, a cylinder, an ellipsoid and a box, were designed for two distinct scenarios. In the first scenario, all targets had identical volumes, and in the second one, all targets had identical surface areas. High quality stereotactic radiosurgery plans with at least 95% target coverage and selectivity were created for each target in both scenarios. Normal brain volumes V12Gy, V14Gy and V16Gy corresponding to received dose of 12 Gy, 14 Gy and 16 Gy, respectively, were computed and analyzed. Additionally, V12Gy and V14Gy volumes and values for seven prospective toxicity variables were recorded for 100 meningioma patients after Gamma Knife radiosurgery. Multivariable stepwise linear regression and best subset linear regression analyses were performed in two statistical software packages, SAS/STAT and R, respectively. RESULTS:In a phantom study, for the constant volume targets, the volumes of 12 Gy, 14 Gy and 16 Gy isodose clouds were the lowest for the spherical target as an expected corollary of the isoperimetric inequality. For the constant surface area targets, a conventional wisdom is confirmed, as the target volume increases the corresponding volumes V12Gy, V14Gy and V16Gy also increase. In the 100-meningioma patient cohort, the best univariate model featured tumor surface area as the most significantly associated variable with both V12Gy and V14Gy volumes, corresponding to the adjusted R2 values of 0.82 and 0.77, respectively. Two statistical methods converged to matching multivariable models. CONCLUSIONS:In a univariate model, target surface area is a better predictor of spilled dose to normal tissue than target largest dimension or target volume itself. In complex multivariate models, target surface area is an independent variable for modeling radiosurgical normal tissue toxicity risk

    Two preclinical MR-CBCT imaging phantoms.

    No full text
    <p>(a) Calibration phantom design (b) Geometry phantom design (c) 3D printed geometry phantom (d) Geometry phantom assembly. The cylindrical phantom was designed to fit within imaging and treatment cradles. The fillable compartments allow inclusion of materials such as water, air, silicone and glass to generate contrast.</p

    CBCT and the corresponding distortion corrected MR images.

    No full text
    <p>(a) CBCT and (b) MR of the contouring and contrast modules. (c) CBCT and (d) MR of the grid module.</p
    corecore