66 research outputs found

    ATLAS: Airborne Tunable Laser Absorption Spectrometer for stratospheric trace gas measurements

    Get PDF
    The ATLAS instrument is an advanced technology diode laser based absorption spectrometer designed specifically for stratospheric tracer studies. This technique was used in the acquisition of N2O tracer data sets on the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition. These data sets have proved valuable for comparison with atmospheric models, as well as in assisting in the interpretation of the entire ensemble of chemical and meteorological data acquired on these two field studies. The N2O dynamical tracer data set analysis revealed several ramifications concerning the polar atmosphere: the N2O/NO(y) correlation, which is used as a tool to study denitrification in the polar vertex; the N2O Southern Hemisphere morphology, showing subsidence in the winter polar vortex; and the value of the N2O measurements in the interpretation of ClO, O3, and NO(y) measurements and of the derived dynamical tracer, potential vorticity. Field studies also led to improved characterization of the instrument and to improved accuracy

    Chemistry Simulations Using MERRA-2 Reanalysis with the GMI CTM and Replay in Support of the Atmospheric Composition Community

    Get PDF
    Simulations using reanalyzed meteorological conditions have been long used to understand causes of atmospheric composition change over the recent past. Using the new Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) meteorology, chemistry simulations are being conducted to create products covering 1980-2016 for the atmospheric composition community. These simulations use the Global Modeling Initiative (GMI) chemical mechanism in two different models: the GMI Chemical Transport Model (CTM) and the GEOS-5 model developed Replay mode. Replay mode means an integration of the GEOS-5 general circulation model that is incrementally adjusted each time step toward the MERRA-2 analysis. The GMI CTM is a 1 x 1.25 simulation and the MERRA-2 GMI Replay simulation uses the native MERRA-2 approximately horizontal resolution on the cubed sphere. The Replay simulations is driven by the online use of key MERRA-2 meteorological variables (i.e. U, V, T, and surface pressure) with all other variables calculated in response to those variables. A specialized set of transport diagnostics is included in both runs to better understand trace gas transport and changes over the recent past

    The Impact of New Estimates of Mixing Ratio and Flux-based Halogen Scenarios on Ozone Evolution

    Get PDF
    The evolution of ozone in the 21st century has been shown to be mainly impacted by the halogen emissions scenario and predicted changes in the circulation of the stratosphere. New estimates of mixing ratio and flux-based emission scenarios have been produced from the SPARC Lifetime Assessment 2013. Simulations using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) are conducted using this new A1 2014 halogen scenario and compared to ones using the A1 2010 scenario. This updated version of GEOSCCM includes a realistic representation of the Quasi-Biennial Oscillation and improvements related to the break up of the Antarctic polar vortex. We will present results of the ozone evolution over the recent past and 21st century to the A1 2010, A1 2014 mixing ratio, and an A1 2014 flux-based halogen scenario. Implications of the uncertainties in these estimates as well as those from possible circulation changes will be discussed

    Evaluation of MERRA-2-Based Ozone Profile Simulations with the Global Ozonesonde Network

    Get PDF
    Chemical transport model (CTM) hindcasts of ozone (O3) are useful for filling in observational gaps and providing context for observed O3 variability and trends. We use global networks of ozonesonde stations to evaluate the O3 profiles in two simulations running versions of the NASA Global Modeling Initiative (GMI) chemical mechanism. Both simulations are tied to the NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) meteorological reanalysis: 1) The GMI CTM, and 2) The MERRA-2 GMI Replay (M2 GMI). Both simulations start in 1980, and are compared against >50,000 ozonesonde profiles from 37 global stations from the tropics to the poles. The comparisons allow us to evaluate how the Replay technique affects modeled O3 distribution, how an updated chemical mechanism in the GMI CTM affects simulated tropospheric O3 amounts, and how observed O3 distributions compare to the full set of model output. In general, M2 GMI O3 is ~10% higher than in the GMI CTM, and shows global near-surface and tropical upper troposphere/lower stratosphere (UT/LS) high biases. The updated chemical mechanism in the GMI CTM reduces these high biases. Both simulations show similar negative biases in tropical free-tropospheric O3, especially during typical biomass burning seasons. The simulations are highly-correlated with ozonesonde measurements, particularly in the UT/LS (r > 0.8), showing the ability of MERRA-2 to capture tropopause height variations. Both simulations show improved correlations with ozonesonde data and smaller O3 biases in recent years. We expect to use the sonde/model comparisons to diagnose causes of disagreement and to gauge the feasibility of calculating multidecadal O3 trends from the model output

    The Antarctic Ozone Hole: An Update

    Get PDF
    The stratospheric ozone hole, an annual occurrence during austral spring, is caused by heterogeneous conversion of hydrogen chloride and chlorine nitrate to chlorine radicals. These reactions take place of polar stratospheric cloud particles in the cold, isolate Antarctic winter vortex. The chlorine radicals participate in chemical reactions that rapidly deplete ozone when sunlight returns at the end of polar night. International agreements eliminated production of the culprit anthropogenic chlorofluorocarbons in the late 1990s, but due to their long stratospheric lifetime (50-100 years), the ozone hole will continue its annual appearance for years to come

    Understanding Differences in the Response to Composition Change as Simulated by CCMVal Models

    Get PDF
    Chemistry climate models (CCMs) have a common conceptual basis. Differences in implementation lead to differences in the stratospheric ozone response to changes in composition and climate. Although evaluation by CCMVal-2 identified strengths and weaknesses of participant models, the evaluation results were not used to discriminate among projections for future ozone evolution, at least in part because the overall diagnostic evaluation did not cleanly relate to the differences in CCM response. Here we use a subset of CCMVal diagnostics and additional analysis to understand the differences in response. In the upper stratosphere, differences in simulated temperature and total odd nitrogen prior to increases in chlorine loading explain the large differences in CCM sensitivity. In the lower atmosphere, there are two principle contributions to differences in CCM sensitivity to chlorine and climate change. First, differences in the lower stratospheric ClO affect simulated sensitivity to chlorine. CCMs with best transport performance match NDACC column HCl measurements at a broad range of latitudes. Other CCMs disagree with observations due to differences in total inorganic chlorine, partitioning between HCl and ClONO2, or both. Differences in ClONO2 are directly related to differences in simulated ClO. Second, although all CCMs predict increased tropical upwelling, the rate of increase varies and contributes to differences in tropical ozone and the 60N-60S column average

    Uncertainties in global aerosol simulations: Assessment using three meteorological data sets

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94950/1/jgrd13664.pd

    Large-Scale Atmospheric Transport in GEOS Replay Simulations

    Get PDF
    Offline chemical transport models (CTMs) have traditionally been used to perform studies of atmospheric chemistry in a fixed dynamical environment. An alternative to using CTMs is to constrain the flow in a general circulation model using winds from meteorological analyses. The Goddard Earth Observing System (GEOS) "replay" approach involves reading in analyzed fields every six hours and recomputing the analysis increments, which are applied as a forcing to the meteorology at every model time step. Unlike in CTM, all of the subgrid-scale processes are recalculated on-line so that they are consistent with the large-scale analysis fields, similar in spirit to "nudged" simulations, in which the online meteorology is relaxed to the analysis. Here we compare the transport of idealized tracers in different replay simulations constrained with meteorological fields taken from The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). We show that there are substantial differences in their large-scale stratospheric transport, depending on whether analysis fields or assimilated fields are used. Replay simulations constrained with the instantaneous analysis fields produce stratospheric mean age values that are up to 30% too young relative to observations; by comparison, simulations constrained with the time-averaged assimilated fields produce more credible stratospheric transport. Our study indicates that care should be taken to correctly configure the model when the replay technique is used to simulate stratospheric composition

    Seasonal Variations of Stratospheric Age Spectra in GEOSCCM

    Get PDF
    There are many pathways for an air parcel to travel from the troposphere to the stratosphere, each of which takes different time. The distribution of all the possible transient times, i.e. the stratospheric age spectrum, contains important information on transport characteristics. However, it is computationally very expensive to compute seasonally varying age spectra, and previous studies have focused mainly on the annual mean properties of the age spectra. To date our knowledge of the seasonality of the stratospheric age spectra is very limited. In this study we investigate the seasonal variations of the stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). We introduce a method to significantly reduce the computational cost for calculating seasonally dependent age spectra. Our simulations show that stratospheric age spectra in GEOSCCM have strong seasonal cycles and the seasonal cycles change with latitude and height. In the lower stratosphere extratropics, the average transit times and the most probable transit times in the winter/early spring spectra are more than twice as old as those in the summer/early fall spectra. But the seasonal cycle in the subtropical lower stratosphere is nearly out of phase with that in the extratropics. In the middle and upper stratosphere, significant seasonal variations occur in the sUbtropics. The spectral shapes also show dramatic seasonal change, especially at high latitudes. These seasonal variations reflect the seasonal evolution of the slow Brewer-Dobson circulation (with timescale of years) and the fast isentropic mixing (with timescale of days to months)

    Long-Term Changes in Stratospheric Age Spectra in the 21st Century in the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM)

    Get PDF
    In this study we investigate the long-term variations in the stratospheric age spectra using simulations of the 21st century with the Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM). Our purposes are to characterize the long-term changes in the age spectra and identify processes that cause the decrease of the mean age in a warming climate. Changes in the age spectra in the 21st century simulations are characterized by decreases in the modal age, the mean age, the spectral width, and the tail decay timescale. Our analyses show that the decrease in the mean age is caused by two processes: the acceleration of the residual circulation that increases the young air masses in the stratosphere, and the weakening of the recirculation that leads to the decrease of tail of the age spectra and the decrease of the old air masses. The weakening of the stratospheric recirculation is also strongly correlated with the increase of the residual circulation. One important result of this study is that the decrease of the tail of the age spectra makes an important contribution to the decrease of the main age. Long-term changes in the stratospheric isentropic mixing are investigated. Mixing increases in the subtropical lower stratosphere, but its impact on the age spectra is outweighed by the increase of the residual circulation. The impacts of the long-term changes in the age spectra on long-lived chemical traces are also investigated. 37
    • …
    corecore