31 research outputs found

    Identifying the Catalytic and Ligand Binding Roles of Active Site Residues in Homotetrameric R67 Dihydrofolate Reductase

    Get PDF
    R67 dihydrofolate reductase (DHFR) is a novel protein that confers clinical resistance to trimethoprim (TMP). Surprisingly, this R-plasmid encoded enzyme does not share homology with chromosomal DHFR. Recently a high resolution crystal structure of R67 DHFR has been solved. From this structure, R67 DHFR is a homotetramer that possesses exact 222 symmetry and a single active site pore that traverses the length of the protein (Narayana et al., 1995). Although this symmetry implies that four symmetry related binding sites must exist for each substrate, isothermal titration calorimetry studies indicate only two molecules bind. Three possible combinations of bound ligands have been observed. These include two dihydrofolate molecules or two NADPH molecules or one substrate + one cofactor (Bradrick et al., 1996). The latter is the productive ternary complex. To date a crystal structure of this ternary complex has been solved. Computational docking studies, however have been used to develop a model of the productive ternary complex (Howell et al., 2001). This model has implicated several active site residues to be involved in ligand binding. Because of the unusual 222 symmetry of this enzyme and the fact it shares no structural similarities with the chromosomal enzyme, R67 DHFR must utilize a different strategy for ligand binding and catalysis. The research in this dissertation has been focused on utilizing site directed mutagenesis as a means to probe the function of active residues implicated by the computational studies to be important in ligand binding and catalysis. Another important goal of this work has been to probe the role interligand cooperativity v may play in the catalytic function of R67 DHFR. The results of the research presented in this support a model where R67 DHFR utilizes a an unusual “hot spot” binding surface capable of binding both ligands and facilitates catalysis simply by binding ligands in the appropriate orientation to stabilize the transition state. Thus R67 DHFR has adopted a novel yet simple strategy to reach the transition state compared with other more highly evolved DHFRs

    Determination of Peptide and Protein Ion Charge States by Fourier Transformation of Isotope-Resolved Mass Spectra

    Get PDF
    We report an automated method for determining charge states from high-resolution mass spectra. Fourier transforms of isotope packets from high-resolution mass spectra are compared to Fourier transforms of modeled isotopic peak packets for a range of charge states. The charge state for the experimental ion packet is determined by the model isotope packet that yields the best match in the comparison of the Fourier transforms. This strategy is demonstrated for determining peptide ion charge states from “zoom scan” data from a linear quadrupole ion trap mass spectrometer, enabling the subsequent automated identification of singly- through quadruply-charged peptide ions, while reducing the numbers of conflicting identifications from ambiguous charge state assignments. We also apply this technique to determine the charges of intact protein ions from LC-FTICR data, demonstrating that it is more sensitive under these experimental conditions than two existing algorithms. The strategy outlined in this paper should be generally applicable to mass spectra obtained from any instrument capable of isotopic resolution

    An open source, FPGA-based LeKID readout for BLAST-TNG: Pre-flight results

    Get PDF
    We present a highly frequency multiplexed readout for large-format superconducting detector arrays intended for use in the next generation of balloon-borne and space-based sub-millimeter and far-infrared missions. We will demonstrate this technology on the upcoming NASA Next Generation Balloon-borne Large Aperture Sub-millimeter Telescope (BLAST-TNG) to measure the polarized emission of Galactic dust at wavelengths of 250, 350 and 500 microns. The BLAST-TNG receiver incorporates the first arrays of Lumped Element Kinetic Inductance Detectors (LeKID) along with the first microwave multiplexing readout electronics to fly in a space-like environment and will significantly advance the TRL for these technologies. After the flight of BLAST-TNG, we will continue to improve the performance of the detectors and readout electronics for the next generation of balloon-borne instruments and for use in a future FIR Surveyor. Read More: http://www.worldscientific.com/doi/abs/10.1142/S225117171641003

    The Providence Mutation (βK82D) in Human Hemoglobin Substantially Reduces βCysteine 93 Oxidation and Oxidative Stress in Endothelial Cells

    No full text
    The highly toxic oxidative transformation of hemoglobin (Hb) to the ferryl state (HbFe4+) is known to occur in both in vitro and in vivo settings. We recently constructed oxidatively stable human Hbs, based on the Hb Providence (βK82D) mutation in sickle cell Hb (βE6V/βK82D) and in a recombinant crosslinked Hb (rHb0.1/βK82D). Using High Resolution Accurate Mass (HRAM) mass spectrometry, we first quantified the degree of irreversible oxidation of βCys93 in these proteins, induced by hydrogen peroxide (H2O2), and compared it to their respective controls (HbA and HbS). Both Hbs containing the βK82D mutation showed considerably less cysteic acid formation, a byproduct of cysteine irreversible oxidation. Next, we performed a novel study aimed at exploring the impact of introducing βK82D containing Hbs on vascular endothelial redox homeostasis and energy metabolism. Incubation of the mutants carrying βK82D with endothelial cells resulted in altered bioenergetic function, by improving basal cellular glycolysis and glycolytic capacity. Treatment of cells with Hb variants containing βK82D resulted in lower heme oxygenase-1 and ferritin expressions, compared to native Hbs. We conclude that the presence of βK82D confers oxidative stability to Hb and adds significant resistance to oxidative toxicity. Therefore, we propose that βK82D is a potential gene-editing target in the treatment of sickle cell disease and in the design of safe and effective oxygen therapeutics

    Dissection of the radical reactions linked to fetal hemoglobin reveals enhanced pseudoperoxidase activity.

    Get PDF
    In the presence of excess hydrogen peroxide (H2O2), ferrous (Fe(+2)) human hemoglobin (Hb) (α2β2) undergoes a rapid conversion to a higher oxidation ferryl state (Fe(+4)) which rapidly autoreduces back to the ferric form (Fe(+3)) as H2O2 is consumed in the reaction. In the presence of additional H2O2 the ferric state can form both ferryl Hb and an associated protein radical in a pseudoperoxidative cycle that results in the loss of radicals and heme degradation. We examined whether adult HbA (β2α2) exhibits a different pseudoenzymatic activity than fetal Hb (γ2α2) due to the switch of γ to β subunits. Rapid mixing of the ferric forms of both proteins with excess H2O2 resulted in biphasic kinetic time courses that can be assigned to γ/β and α, respectively. Although there was a 1.5 fold increase in the fast reacting γ /β subunits the slower reacting phases (attributed to α subunits of both proteins) were essentially the same. However, the rate constant for the auto-reduction of ferryl back to ferric for both proteins was found to be 76% higher for HbF than HbA and in the presence of the mild reducing agent, ascorbate there was a 3-fold higher reduction rate in ferryl HbF as opposed to ferryl HbA. Using quantitative mass spectrometry in the presence of H2O2 we found oxidized γ/β Cys93, to be more abundantly present in HbA than HbF, whereas higher levels of nitrated β Tyr35 containing peptides were found in HbA samples treated with nitrite. The extraordinary stability of HbF reported here may explain the evolutionary advantage this protein may confer onto co-inherited hemoglobinopathies and can also be utilized in the engineering of oxidatively stable Hb-based oxygen carriers

    Site-directed mutagenesis of cysteine residues alters oxidative stability of fetal hemoglobin

    No full text
    Redox active cysteine residues including βCys93 are part of hemoglobin's “oxidation hotspot”. Irreversible oxidation of βCys93 ultimately leads to the collapse of the hemoglobin structure and release of heme. Human fetal hemoglobin (HbF), similarly to the adult hemoglobin (HbA), carries redox active γCys93 in the vicinity of the heme pocket. Site-directed mutagenesis has been used in this study to examine the impact of removal and/or addition of cysteine residues in HbF. The redox activities of the recombinant mutants were examined by determining the spontaneous autoxidation rate, the hydrogen peroxide induced ferric to ferryl oxidation rate, and irreversible oxidation of cysteine by quantitative mass spectrometry. We found that substitution of γCys93Ala resulted in oxidative instability characterized by increased oxidation rates. Moreover, the addition of a cysteine residue at α19 on the exposed surface of the α-chain altered the regular electron transfer pathway within the protein by forming an alternative oxidative site. This may also create an accessible site for di-sulfide bonding between Hb subunits. Engineering of cysteine residues at suitable locations may be useful as a tool for managing oxidation in a protein, and for Hb, a way to stave off oxidation reactions resulting in a protein structural collapse

    Tales of Dihydrofolate Binding to R67 Dihydrofolate Reductase

    No full text
    Homotetrameric R67 dihydrofolate reductase possesses 222 symmetry and a single active site pore. This situation results in a promiscuous binding site that accommodates either the substrate, dihydrofolate (DHF), or the cofactor, NADPH. NADPH interacts more directly with the protein as it is larger than the substrate. In contrast, the <i>p</i>-aminobenzoyl-glutamate tail of DHF, as monitored by nuclear magnetic resonance and crystallography, is disordered when bound. To explore whether smaller active site volumes (which should decrease the level of tail disorder by confinement effects) alter steady state rates, asymmetric mutations that decreased the half-pore volume by ∼35% were constructed. Only minor effects on <i>k</i><sub>cat</sub> were observed. To continue exploring the role of tail disorder in catalysis, 1-ethyl-3-[3-(dimethylamino)­propyl]­carbodiimide-mediated cross-linking between R67 DHFR and folate was performed. A two-folate, one-tetramer complex results in the loss of enzyme activity where two symmetry-related K32 residues in the protein are cross-linked to the carboxylates of two bound folates. The tethered folate could be reduced, although with a ≤30-fold decreased rate, suggesting decreased dynamics and/or suboptimal positioning of the cross-linked folate for catalysis. Computer simulations that restrain the dihydrofolate tail near K32 indicate that cross-linking still allows movement of the <i>p</i>-aminobenzoyl ring, which allows the reaction to occur. Finally, a bis-ethylene-diamine-α,γ-amide folate adduct was synthesized; both negatively charged carboxylates in the glutamate tail were replaced with positively charged amines. The <i>K</i><sub>i</sub> for this adduct was ∼9-fold higher than for folate. These various results indicate a balance between folate tail disorder, which helps the enzyme bind substrate while dynamics facilitates catalysis

    Oxidative instability of hemoglobin E (β26 Glu→Lys) is increased in the presence of free α subunits and reversed by α-hemoglobin stabilizing protein (AHSP): Relevance to HbE/β-thalassemia

    Get PDF
    When adding peroxide (H2O2), β subunits of hemoglobin (Hb) bear the burden of oxidative changes due in part to the direct oxidation of its Cys93. The presence of unpaired α subunits within red cells and/or co-inheritance of another β subunit mutant, HbE (β26 Glu→Lys) have been implicated in the pathogenesis and severity of β thalassemia. We have found that although both HbA and HbE autoxidize at initially comparable rates, HbE loses heme at a rate almost 2 fold higher than HbA due to unfolding of the protein. Using mass spectrometry and the spin trap, DMPO, we were able to quantify irreversible oxidization of βCys93 to reflect oxidative instability of β subunits. In the presence of free α subunits and H2O2, both HbA and HbE showed βCys93 oxidation which increased with higher H2O2 concentrations. In the presence of Alpha-hemoglobin stabilizing protein (AHSP), which stabilizes the α-subunit in a redox inactive hexacoordinate conformation (thus unable to undergo the redox ferric/ferryl transition), Cys93 oxidation was substantially reduced in both proteins. These experiments establish two important features that may have relevance to the mechanistic understanding of these two inherited hemoglobinopathies, i.e. HbE/β thalassemia: First, a persistent ferryl/ferryl radical in HbE is more damaging to its own β subunit (i.e., βCys93) than HbA. Secondly, in the presence of excess free α-subunit and under the same oxidative conditions, these events are substantially increased for HbE compared to HbA, and may therefore create an oxidative milieu affecting the already unstable HbE
    corecore