45 research outputs found

    Effects of Thermal Stress on Amount, Composition, and Antibacterial Properties of Coral Mucus

    Get PDF
    Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, United States of America ABSTRACT The surface mucus layer of reef-building corals supports feeding, sediment clearing, and protection from pathogenic invaders. As much as half of the fixed carbon supplied by the corals\u27 photosynthetic symbionts is incorporated into expelled mucus. It is therefore reasonable to expect that coral bleaching (disruption of the coralfialgal symbiosis) would affect mucus production. Since coral mucus serves as an important nutrient source for the entire reef community, this could have substantial ecosystemwide consequences. In this study, we examined the effects of heat stress-induced coral bleaching on the composition and antibacterial properties of coral mucus. In a controlled laboratory thermal challenge, stressed corals produced mucus with higher protein (D 2:1, p \u3c 0:001) and lipid content (D 15:7, p D 0:02) and increased antibacterial activity (likelihood ratio D 100, p \u3c 0:001) relative to clonal controls. These results are likely explained by the expelled symbionts in the mucus of bleached individuals. Our study suggests that coral bleaching could immediately impact the nutrient flux in the coral reef ecosystem via its effect on coral mucus

    Relationship between Acropora millepora juvenile fluorescence and composition of newly established Symbiodinium assemblage

    Get PDF
    Coral-dinoflagellate symbiosis is the key biological interaction enabling existence of modern-type coral reefs, but the mechanisms regulating initial host–symbiont attraction, recognition and symbiont proliferation thus far remain largely unclear. A common reef-building coral, Acropora millepora, displays conspicuous fluorescent polymorphism during all phases of its life cycle, due to the differential expression of fluorescent proteins (FPs) of the green fluorescent protein family. In this study, we examine whether fluorescent variation in young coral juveniles exposed to natural sediments is associated with the uptake of disparate Symbiodinium assemblages determined using ITS-2 deep sequencing. We found that Symbiodinium assemblages varied significantly when redness values varied, specifically in regards to abundances of clades A and C. Whether fluorescence was quantified as a categorical or continuous trait, clade A was found at higher abundances in redder juveniles. These preliminary results suggest juvenile fluorescence may be associated with Symbiodinium uptake, potentially acting as either an attractant to ecologically specific types or as a mechanism to modulate the internal light environment to control Symbiodinium physiology within the host

    Effects of thermal stress on amount, composition, and antibacterial properties of coral mucus

    Get PDF
    The surface mucus layer of reef-building corals supports feeding, sediment clearing, and protection from pathogenic invaders. As much as half of the fixed carbon supplied by the corals’ photosynthetic symbionts is incorporated into expelled mucus. It is therefore reasonable to expect that coral bleaching (disruption of the coral–algal symbiosis) would affect mucus production. Since coral mucus serves as an important nutrient source for the entire reef community, this could have substantial ecosystem-wide consequences. In this study, we examined the effects of heat stress-induced coral bleaching on the composition and antibacterial properties of coral mucus. In a controlled laboratory thermal challenge, stressed corals produced mucus with higher protein (ÎČ = 2.1, p < 0.001) and lipid content (ÎČ = 15.7, p = 0.02) and increased antibacterial activity (likelihood ratio = 100, p < 0.001) relative to clonal controls. These results are likely explained by the expelled symbionts in the mucus of bleached individuals. Our study suggests that coral bleaching could immediately impact the nutrient flux in the coral reef ecosystem via its effect on coral mucus

    Building consensus around the assessment and interpretation of Symbiodiniaceae diversity

    Get PDF
    Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.journal articl

    Building consensus around the assessment and interpretation of Symbiodiniaceae diversity

    Get PDF
    Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Reproductive histology and energetics in Acropora hyacinthus in response to the 2019 Moorea bleaching event.

    No full text
    Dataset: Acropora hyacinthus energetics and reproductionThe French Polynesian island of Mo’orea experienced a severe mass bleaching event in 2019 accompanied by widespread coral mortality. At the most heavily impacted sites, Acropora hyacinthus individuals that were resistant to bleaching were observed alongside colonies that bleached but showed signs of symbiont recovery shortly after the bleaching event. Fragments of healthy A. hyacinthus colonies five months post-bleaching were sampled for energetic assays and histological measurements. Despite healthy appearances in both resistant and recovered corals, recovered colonies had significantly reduced energy reserves compared to resistant colonies. In addition, compound effects of stress on reproduction were observed: recovered colonies displayed both a lower probability of containing gametes and lower fecundity per polyp. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/876072NSF Division of Ocean Sciences (NSF OCE) OCE-1935308, NSF Division of Ocean Sciences (NSF OCE) OCE-193530

    ITS2 amplicon sequences from Acropora hyacinthus samples collected at mutliple timepoints in Moorea, French Polynesia after the mass bleaching event of 2019

    No full text
    Dataset: Acropora hyacinthus ITS2 amplicon sequencingThis dataset represents ITS2 amplicon sequences from Acropora hyacinthus samples collected at mutliple timepoints in Moorea, French Polynesia after the mass bleaching event of 2019. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/876564NSF Division of Ocean Sciences (NSF OCE) OCE-1935308, NSF Division of Ocean Sciences (NSF OCE) OCE-19353052022-12-3

    Pstrigosa2012

    No full text
    Raw data from Caribbean Field Season

    ParentsRJune2015

    No full text
    Results of parentage analysis based on microsatellites for individual color morph
    corecore