612 research outputs found

    Rewriting the Ending: Malachi\u27s Threat and the Destruction of the Temple in the Gospel of Mark

    Get PDF
    This is a study of the presence of the OT book of Malachi in the Gospel of Mark. The Gospel begins (1:2–3) with a conflated quotation of Mal 3:1; Exod 23:20; and Isa 40:3. Recent studies have judged that Isa 40:3 is hermeneutically influential on Mark’s presentation of Jesus. Similarly, I aim to show that Mal 3:1, with its promise of a messenger who would proceed Yahweh’s sudden arrival at the temple, is hermeneutically influential in ways heretofore not commonly recognized. The heart of my proposal is that Mark 1–13, that is, roughly three-quarters of the Gospel, is framed by an inclusio that opens with a reference to the first half of Mal 3:1 in 1:2b and closes with a reference to the second half of the same verse in 13:35–36. In Chapter One, I examine the first half of this inclusio. While some have minimized the significance of Mal 3:1 in Mark’s opening quotation, I argue that Mark’s conflation of these three verses is a development of an intertextuality already present in Malachi. In Chapter Two, I investigate the second half of the inclusio, making the case that Mark alludes to Mal 3:1b in the Parable of the Porter at the end of ch. 13. As I shall document, despite lexical similarities between these two texts, this possible allusion has gone largely, although not entirely, unrecognized. Chapters Three and Four explore some of these implications. In Chapter Three, I propose that Mal 3:1 provides the narrative logic for chs. 11–12. In Chapter Four, I give a summary reading of Mark 13 that anticipates the allusion to Malachi’s threat at the end of the discourse. Through close attention to Mark’s allusions to the OT, I attempt to show that Jesus’s prediction of the temple’s destruction is the dominant theme throughout the discourse. As one of Israel’s prophets, Malachi had promised an end to Israel’s story—end as both goal and fulfillment. In his Gospel, especially in chs. 1 and 13, Mark is rewriting that ending

    Nanomechanics Simulation Toolkit - Dislocations Make or Break Materials

    Get PDF
    The goal of computational material science is to improve existing materials and design new ones through mathematical calculations. In particular, molecular dynamic simulations can allow for visualization of dislocations in a material, along with its resulting behavior when under stress. For example, plastic deformation and strain hardening result from the movement, multiplication and interaction of dislocations within the crystal structure. A simulation tool to study these phenomena was developed for the nanoHUB web resource as a part of the Network for Computational Nanotechnology at Purdue University and targets audiences ranging from undergraduate students to researchers. We created a user-friendly environment to explain the complicated nature of dislocations on a basic level for undergraduate students, while enabling researchers to modify advanced inputs. The output of the tool provides both quantitative graphs and visual animations, essential for anyone trying to understand how dislocations either move or nucleate. In its default state, the tool will access loader files that generate simulations with pre-determined inputs in order to accelerate usage. More advanced users can manipulate parameters, such as simulation run time and dislocation type, to fit their individual needs. The tool can provide a useful framework both as an instructional device in material science courses as well as a simulation framework for researchers. Furthermore, web resources like this provide understandable feedback for modeling and verifying ongoing research projects

    Using smart power management control to maximize energy utilization and reliability within a microgrid of interconnected solar home systems

    Get PDF
    Over the past 20 years, off-grid solar home systems (SHS), comprised of solar panels, batteries, a charge controller and loads, have proved the most popular and immediate solution increasing energy access, mainly through rural electrification, across the Global South. Although deployed in significant numbers, issues remain with SHS cost, reliability, utilization and sustainability. Interconnection of SHS to form a microgrid of connected prosumers and consumers may offer a solution that, by employing smart management of the power distribution amongst connected households, has the potential to ‘unlock’ latent generation and storage capacity and so improve reliability and security of supply, reduce the system cost per head, and ultimately the levelized cost of energy supplied. These factors combine to improve the overall sustainability, efficiency and flexibility of SHS technology. This paper presents the functionality of a Smart Power Management (SPM) that seeks to distribute power across prosumers/consumers connected to a microgrid of interconnected SHS, to maximise the utilisation of available generation and storage across the system and so improve the reliability and affordability of the energy supplied. The SPM is applied and appraised using a simulation involving representative generation and demand profiles for a village with a high penetration of SHS technology. The power management methodology utilizes algorithms applied to manage power flows between customers. The simulated results demonstrate significant improvements in reliability of supply within the microgrid during low generation season

    Assessment of left atrial volume before and after pulmonary thromboendarterectomy in chronic thromboembolic pulmonary hypertension.

    Get PDF
    BackgroundImpaired left ventricular diastolic filling is common in chronic thromboembolic pulmonary hypertension (CTEPH), and recent studies support left ventricular underfilling as a cause. To investigate this further, we assessed left atrial volume index (LAVI) in patients with CTEPH before and after pulmonary thromboendarterectomy (PTE).MethodsForty-eight consecutive CTEPH patients had pre- & post-PTE echocardiograms and right heart catheterizations. Parameters included mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), cardiac index, LAVI, & mitral E/A ratio. Echocardiograms were performed 6 ± 3 days pre-PTE and 10 ± 4 days post-PTE. Regression analyses compared pre- and post-PTE LAVI with other parameters.ResultsPre-op LAVI (mean 19.0 ± 7 mL/m2) correlated significantly with pre-op PVR (R = -0.45, p = 0.001), mPAP (R = -0.28, p = 0.05) and cardiac index (R = 0.38, p = 0.006). Post-PTE, LAVI increased by 18% to 22.4 ± 7 mL/m2 (p = 0.003). This change correlated with change in PVR (765 to 311 dyne-s/cm5, p = 0.01), cardiac index (2.6 to 3.2 L/min/m2, p = 0.02), and E/A (.95 to 1.44, p = 0.002).ConclusionIn CTEPH, smaller LAVI is associated with lower cardiac output, higher mPAP, and higher PVR. LAVI increases by ~20% after PTE, and this change correlates with changes in PVR and mitral E/A. The rapid increase in LAVI supports the concept that left ventricular diastolic impairment and low E/A pre-PTE are due to left heart underfilling rather than inherent left ventricular diastolic dysfunction

    The development of non-coding RNA ontology

    Get PDF
    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data

    A multiscale approach for modeling crystalline solids

    Get PDF
    In this paper we present a modeling approach to bridge the atomistic with macroscopic scales in crystalline materials. The methodology combines identification and modeling of the controlling unit processes at microscopic level with the direct atomistic determination of fundamental material properties. These properties are computed using a many body Force Field derived from ab initio quantum-mechanical calculations. This approach is exercised to describe the mechanical response of high-purity Tantalum single crystals, including the effect of temperature and strain-rate on the hardening rate. The resulting atomistically informed model is found to capture salient features of the behavior of these crystals such as: the dependence of the initial yield point on temperature and strain rate; the presence of a marked stage I of easy glide, specially at low temperatures and high strain rates; the sharp onset of stage II hardening and its tendency to shift towards lower strains, and eventually disappear, as the temperature increases or the strain rate decreases; the parabolic stage II hardening at low strain rates or high temperatures; the stage II softening at high strain rates or low temperatures; the trend towards saturation at high strains; the temperature and strain-rate dependence of the saturation stress; and the orientation dependence of the hardening rate

    Mass uptake during oxidation of metallic alloys: literature data collection, analysis, and FAIR sharing

    Full text link
    The area-normalized change of mass (Δ\Deltam/A) with time during the oxidation of metallic alloys is commonly used to assess oxidation resistance. Analyses of such data can also aid in evaluating underlying oxidation mechanisms. We performed an exhaustive literature search and digitized normalized mass change vs. time data for 407 alloys. To maximize the impact of these and future mass uptake data, we developed and published an open, online, computational workflow that fits the data to various models of oxidation kinetics, uses Bayesian statistics for model selection, and makes the raw data and model parameters available via a queryable database. The tool, Refractory Oxidation Database (https://nanohub.org/tools/refoxdb/), uses nanoHUB's Sim2Ls to make the workflow and data (including metadata) findable, accessible, interoperable, and reusable (FAIR). We find that the models selected by the original authors do not match the most likely one according to the Bayesian information criterion (BIC) in 71% of the cases. Further, in 56% of the cases, the published model was not even in the top 3 models according to the BIC. These numbers were obtained assuming an experimental noise of 2.5% of the mass gain range, a smaller noise leads to more discrepancies. The RefOxDB tool is open access and researchers can add their own raw data (those to be included in future publications, as well as negative results) for analysis and to share their work with the community. Such consistent and systematic analysis of open, community generated data can significantly accelerate the development of machine-learning models for oxidation behavior and assist in the understanding and improvement of oxidation resistance

    Global burden of atherosclerotic cardiovascular disease in people with hepatitis C virus infection: a systematic review, meta-analysis, and modelling study

    Get PDF
    Background: More than 70 million people worldwide are estimated to have hepatitis C virus (HCV) infection. Emerging evidence indicates an association between HCV and atherosclerotic cardiovascular disease. We aimed to determine the association between HCV and cardiovascular disease, and estimate the national, regional, and global burden of cardiovascular disease attributable to HCV. Methods: For this systematic review and meta-analysis, we searched MEDLINE, Embase, Ovid Global Health, and Web of Science databases from inception to May 9, 2018, without language restrictions, for longitudinal studies that evaluated the risk ratio (RR) of cardiovascular disease in people with HCV compared with those without HCV. Two investigators independently reviewed and extracted data from published reports. The main outcome was cardiovascular disease, defined as hospital admission with, or mortality from, acute myocardial infarction or stroke. We calculated the pooled RR of cardiovascular disease associated with HCV using a random-effects model. Additionally, we calculated the population attributable fraction and disability-adjusted life-years (DALYs) from HCV-associated cardiovascular disease at the national, regional, and global level. We also used age-stratified and sex-stratified HCV prevalence estimates and cardiovascular DALYs for 100 countries to estimate country-level burden associated with HCV. This study is registered with PROSPERO, number CRD42018091857. Findings: Our search identified 16 639 records, of which 36 studies were included for analysis, including 341 739 people with HCV. The pooled RR for cardiovascular disease was 1·28 (95% CI 1·18-1·39). Globally, 1·5 million (95% CI 0·9-2·1) DALYs per year were lost due to HCV-associated cardiovascular disease. Low-income and middle-income countries had the highest disease burden with south Asian, eastern European, north African, and Middle Eastern regions accounting for two-thirds of all HCV-associated cardiovascular DALYs. Interpretation: HCV infection is associated with an increased risk of cardiovascular disease. The global burden of cardiovascular disease associated with HCV infection was responsible for 1·5 million DALYs, with the highest burden in low-income and middle-income countries
    • …
    corecore