17 research outputs found

    Comparison of analyses of the QTLMAS XIV common dataset. I: genomic selection

    Get PDF
    Background - For the XIV QTLMAS workshop, a dataset for traits with complex genetic architecture has been simulated and released for analyses by participants. One of the tasks was to estimate direct genomic values for individuals without phenotypes. The aim of this paper was to compare results of different approaches used by the participants to calculate direct genomic values for quantitative trait (QT) and binary trait (BT). Results - Participants applied 26 approaches for QT and 15 approaches for BT. Accuracy for QT was between 0.26 and 0.89 for males and between 0.31 and 0.89 for females, and for BT ranged from 0.27 to 0.85. For QT, percentage of lost response to selection varied from 8% to 83%, whereas for BT the loss was between 15% and 71%. Conclusions - Bayesian model averaging methods predicted breeding values slightly better than GBLUP in a simulated data set. The methods utilizing genomic information performed better than traditional pedigree based BLUP analyses. Bivariate analyses was slightly advantageous over single trait for the same method. None of the methods estimated the non-additivity of QTL affecting the QT, which may be one of the constrains in accuracy observed in real data. -------------------------------------------------------------------------------

    Comparison of analyses of the QTLMAS XIV common dataset. II: QTL analysis

    Get PDF
    Background - A quantitative and a binary trait for the 14th QTLMAS 2010 workshop were simulated under a model which combined additive inheritance, epistasis and imprinting. This paper aimed to compare results submitted by the participants of the workshop.Methods - The results were compared according to three criteria: the success rate (ratio of mapped QTL to the total number of simulated QTL), and the error rate (ratio of false positives to the number of reported positions), and mean distance between a true mapped QTL and the nearest submitted position. Results - Seven groups submitted results for the quantitative trait and five for the binary trait. Among the 37 simulated QTL 17 remained undetected. Success rate ranged from 0.05 to 0.43, error rate was between 0.00 and 0.92, and the mean distance ranged from 0.26 to 0.77 Mb. Conclusions - Our comparison shows that differences among methods used by the participants increases with the complexity of genetic architecture. It was particularly visible for the quantitative trait which was determined partly by non-additive QTL. Furthermore, an imprinted QTL with a large effect may remain undetected if the applied model tests only for Mendelian genes

    Genomic breeding value prediction and QTL mapping of QTLMAS2011 data using Bayesian and GBLUP methods

    Get PDF
    Background: The goal of this study was to apply Bayesian and GBLUP methods to predict genomic breeding values (GEBV), map QTL positions and explore the genetic architecture of the trait simulated for the 15 QTL-MAS workshop. Methods. Three methods with models considering dominance and epistasis inheritances were used to fit the data: (i) BayesB with a proportion = 0.995 of SNPs assumed to have no effect, (ii) BayesC, where is considered as unknown, and (iii) GBLUP, which directly fits animal genetic effects using a genomic relationship matrix. Results: BayesB, BayesC and GBLUP with various fitted models detected 6, 5, and 4 out of 8 simulated QTL, respectively. All five additive QTL were detected by Bayesian methods. When two QTL were in either coupling or repulsion phase, GBLUP only detected one of them and missed the other. In addition, GBLUP yielded more false positives. One imprinted QTL was detected by BayesB and GBLUP despite that only additive gene action was assumed. This QTL was missed by BayesC. None of the methods found two simulated additive-by-additive epistatic QTL. Variance components estimation correctly detected no evidence for dominance gene-action. Bayesian methods predicted additive genetic merit more accurately than GBLUP, and similar accuracies were observed between BayesB and BayesC. Conclusions: Bayesian methods and GBLUP mapped QTL to similar chromosome regions but Bayesian methods gave fewer false positives. Bayesian methods can be superior to GBLUP in GEBV prediction when genomic architecture is unknown

    Genetic Variability of Methane Production and Concentration Measured in the Breath of Polish Holstein-Friesian Cattle

    No full text
    The genetic architecture of methane (CH4) production remains largely unknown. We aimed to estimate its heritability and to perform genome-wide association studies (GWAS) for the identification of candidate genes associated with two phenotypes: CH4 in parts per million/day (CH4 ppm/d) and CH4 in grams/day (CH4 g/d). We studied 483 Polish Holstein-Friesian cows kept on two commercial farms in Poland. Measurements of CH4 and carbon dioxide (CO2) concentrations exhaled by cows during milking were obtained using gas analyzers installed in the automated milking system on the farms. Genomic analyses were performed using a single-step BLUP approach. The percentage of genetic variance explained by SNPs was calculated for each SNP separately and then for the windows of neighbouring SNPs. The heritability of CH4 ppm/d ranged from 0 to 0.14, with an average of 0.085. The heritability of CH4 g/d ranged from 0.13 to 0.26, with an average of 0.22. The GWAS detected potential candidate SNPs on BTA 14 which explained ~0.9% of genetic variance for CH4 ppm/d and ~1% of genetic variance for CH4 g/d. All identified SNPs were located in the TRPS1 gene. We showed that methane traits are partially controlled by genes; however, the detected SNPs explained only a small part of genetic variation—implying that both CH4 ppm/d and CH4 g/d are highly polygenic traits

    Comparison of analyses of the QTLMAS XIV common dataset. I: genomic selection

    No full text
    Abstract Background For the XIV QTLMAS workshop, a dataset for traits with complex genetic architecture has been simulated and released for analyses by participants. One of the tasks was to estimate direct genomic values for individuals without phenotypes. The aim of this paper was to compare results of different approaches used by the participants to calculate direct genomic values for quantitative trait (QT) and binary trait (BT). Results Participants applied 26 approaches for QT and 15 approaches for BT. Accuracy for QT was between 0.26 and 0.89 for males and between 0.31 and 0.89 for females, and for BT ranged from 0.27 to 0.85. For QT, percentage of lost response to selection varied from 8% to 83%, whereas for BT the loss was between 15% and 71%. Conclusions Bayesian model averaging methods predicted breeding values slightly better than GBLUP in a simulated data set. The methods utilizing genomic information performed better than traditional pedigree based BLUP analyses. Bivariate analyses was slightly advantageous over single trait for the same method. None of the methods estimated the non-additivity of QTL affecting the QT, which may be one of the constrains in accuracy observed in real data.</p

    Comparison of analyses of the QTLMAS XIV common dataset. I: genomic selection

    No full text
    Background: For the XIV QTLMAS workshop, a dataset for traits with complex genetic architecture has been simulated and released for analyses by participants. One of the tasks was to estimate direct genomic values for individuals without phenotypes. The aim of this paper was to compare results of different approaches used by the participants to calculate direct genomic values for quantitative trait (QT) and binary trait (BT). Results: Participants applied 26 approaches for QT and 15 approaches for BT. Accuracy for QT was between 0.26 and 0.89 for males and between 0.31 and 0.89 for females, and for BT ranged from 0.27 to 0.85. For QT, percentage of lost response to selection varied from 8% to 83%, whereas for BT the loss was between 15% and 71%. Conclusions: Bayesian model averaging methods predicted breeding values slightly better than GBLUP in a simulated data set. The methods utilizing genomic information performed better than traditional pedigree based BLUP analyses. Bivariate analyses was slightly advantageous over single trait for the same method. None of the methods estimated the non-additivity of QTL affecting the QT, which may be one of the constrains in accuracy observed in real data.This proceeding is published as Pszczola, M., Strabel, T., Wolc, A. et al. Comparison of analyses of the QTLMAS XIV common dataset. I: genomic selection. BMC Proc 5, S1 (2011). doi: 10.1186/1753-6561-5-S3-S1.</p
    corecore