17 research outputs found

    Induction of neoantigen-reactive T cells from healthy donors

    No full text
    The identification of immunogenic neoantigens and their cognate T cells represents the most crucial and rate-limiting steps in the development of personalized cancer immunotherapies that are based on vaccination or on infusion of T cell receptor (TCR)-engineered T cells. Recent advances in deep-sequencing technologies and in silico prediction algorithms have allowed rapid identification of candidate neoepitopes. However, large-scale validation of putative neoepitopes and the isolation of reactive T cells are challenging because of the limited availablity of patient material and the low frequencies of neoepitope-specific T cells. Here we describe a standardized protocol for the induction of neoepitope-reactive T cells from healthy donor T cell repertoires, unaffected by the potentially immunosuppressive environment of the tumor-bearing host. Monocyte-derived dendritic cells (DCs) transfected with mRNA encoding candidate neoepitopes are used to prime autologous naive CD8+ T cells. Antigen-specific T cells that recognize endogenously processed and presented epitopes are detected using peptide-MHC (pMHC) multimers. Single multimer-positive T cells are sorted for the identification of TCR sequences, after an optional step that includes clonal expansion and functional characterization. The time required to identify neoepitope-specific T cells is 15 d, with an additional 2-4 weeks required for clonal expansion and downstream functional characterization. Identified neoepitopes and corresponding TCRs provide candidates for use in vaccination and TCR-based cancer immunotherapies, and datasets generated by this technology should be useful for improving algorithms to predict immunogenic neoantigens

    Unbiased identification of T-cell receptors Targeting immunodominant peptide-MHC complexes for T-cell receptor immunotherapy.

    Get PDF
    T-cell receptor (TCR) immunotherapy uses T cells engineered with new TCRs to enable detection and killing of cancer cells. Efficacy of TCR immunotherapy depends on targeting antigenic peptides that are efficiently presented by the best-suited major histocompatibility complex (MHC) molecules of cancer cells. However, efficient strategies are lacking to easily identify TCRs recognizing immunodominant peptide-MHC (pMHC) combinations utilizing any of the six possible MHC class I alleles of a cancer cell. We generated an MHC cell library and developed a platform approach to detect, isolate, and re-express TCRs specific for immunodominant pMHCs. The platform approach was applied to identify a human papillomavirus (HPV16) oncogene E5-specific TCR, recognizing a novel, naturally processed pMHC (HLA-B*15:01) and a cytomegalovirus-specific TCR targeting an immunodominant pMHC (HLA-B*07:02). The platform provides a useful tool to isolate in an unbiased manner TCRs specific for novel and immunodominant pMHC targets for use in TCR immunotherapy
    corecore