1,460 research outputs found

    Control of Four-Level Quantum Coherence via Discrete Spectral Shaping of an Optical Frequency Comb

    Full text link
    We present an experiment demonstrating high-resolution coherent control of a four-level atomic system in a closed (diamond) type configuration. A femtosecond frequency comb is used to establish phase coherence between a pair of two-photon transitions in cold Rb atoms. By controlling the spectral phase of the frequency comb we demonstrate the optical phase sensitive response of the diamond system. The high-resolution state selectivity of the comb is used to demonstrate the importance of the signs of dipole moment matrix elements in this type of closed-loop excitation. Finally, the pulse shape is optimized resulting in a 256% increase in the two-photon transition rate by forcing constructive interference between the mode pairs detuned from an intermediate resonance.Comment: 5 pages, 4 figures Submitted to Physical Review Letter

    Ministers and Masters: Methodism, Manhood, and Honor in the Old South

    Get PDF
    Shedding New Light on the Intersection of Religion and Masculinity As the numbers of Methodists grew in the antebellum South after 1800, so did the tension between the insurgent implications of their faith and the church’s stake in cultural stability. As a means for hope and personal mo...

    Dry Husks

    Get PDF

    The Response of Cerebral Cortex to Haemorrhagic Damage: Experimental Evidence from a Penetrating Injury Model

    Get PDF
    Understanding the response of the brain to haemorrhagic damage is important in haemorrhagic stroke and increasingly in the understanding the cerebral degeneration and dementia that follow head trauma and head-impact sports. In addition, there is growing evidence that haemorrhage from small cerebral vessels is important in the pathogenesis of age-related dementia (Alzheimer's disease). In a penetration injury model of rat cerebral cortex, we have examined the neuropathology induced by a needlestick injury, with emphasis on features prominent in the ageing and dementing human brain, particularly plaque-like depositions and the expression of related proteins. Needlestick lesions were made in neo- and hippocampal cortex in Sprague Dawley rats aged 3-5 months. Brains were examined after 1-30 d survival, for haemorrhage, for the expression of hyperphosphorylated tau, Aβ, amyloid precursor protein (APP), for gliosis and for neuronal death. Temporal cortex from humans diagnosed with Alzheimer's disease was examined with the same techniques. Needlestick injury induced long-lasting changes-haem deposition, cell death, plaque-like deposits and glial invasion-along the needle track. Around the track, the lesion induced more transient changes, particularly upregulation of Aβ, APP and hyperphosporylated tau in neurons and astrocytes. Reactions were similar in hippocampus and neocortex, except that neuronal death was more widespread in the hippocampus. In summary, experimental haemorrhagic injury to rat cerebral cortex induced both permanent and transient changes. The more permanent changes reproduced features of human senile plaques, including the formation of extracellular deposits in which haem and Aβ-related proteins co-localised, neuronal loss and gliosis. The transient changes, observed in tissue around the direct lesion, included the upregulation of Aβ, APP and hyperphosphorylated tau, not associated with cell death. The findings support the possibility that haemorrhagic damage to the brain can lead to plaque-like pathology.This work was supported by the Sir Zelman Cowen Universities Fund, and by the Bluesand Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Piecewise adiabatic population transfer in a molecule via a wave packet

    Full text link
    We propose a class of schemes for robust population transfer between quantum states that utilize trains of coherent pulses and represent a generalized adiabatic passage via a wave packet. We study piecewise Stimulated Raman Adiabatic Passage with pulse-to-pulse amplitude variation, and piecewise chirped Raman passage with pulse-to-pulse phase variation, implemented with an optical frequency comb. In the context of production of ultracold ground-state molecules, we show that with almost no knowledge of the excited potential, robust high-efficiency transfer is possibleComment: 4 pages, 5 figures. Submitted to Phys. Rev. Let
    • …
    corecore