6 research outputs found

    Long-term medical imaging use in children with central nervous system tumors.

    No full text
    BackgroundChildren with central nervous system (CNS) tumors undergo frequent imaging for diagnosis and follow-up, but few studies have characterized longitudinal imaging patterns. We described medical imaging in children before and after malignant CNS tumor diagnosis.ProcedureWe conducted a retrospective cohort study of children aged 0-20 years diagnosed with CNS tumors between 1996-2016 at six U.S. integrated healthcare systems and Ontario, Canada. We collected computed topography (CT), magnetic resonance imaging (MRI), radiography, ultrasound, nuclear medicine examinations from 12 months before through 10 years after CNS diagnosis censoring six months before death or a subsequent cancer diagnosis, disenrollment from the health system, age 21 years, or December 31, 2016. We calculated imaging rates per child per month stratified by modality, country, diagnosis age, calendar year, time since diagnosis, and tumor grade.ResultsWe observed 1,879 children with median four years follow-up post-diagnosis in the U.S. and seven years in Ontario, Canada. During the diagnosis period (±15 days of diagnosis), children averaged 1.10 CTs (95% confidence interval [CI] 1.09-1.13) and 2.14 MRIs (95%CI 2.12-2.16) in the U.S., and 1.67 CTs (95%CI 1.65-1.68) and 1.86 MRIs (95%CI 1.85-1.88) in Ontario. Within one year after diagnosis, 19% of children had ≥5 CTs and 45% had ≥5 MRIs. By nine years after diagnosis, children averaged one MRI and one radiograph per year with little use of other imaging modalities.ConclusionsMRI and CT are commonly used for CNS tumor diagnosis, whereas MRI is the primary modality used during surveillance of children with CNS tumors

    Trends in use of medical imaging in US health care systems and in Ontario, Canada, 2000-2016

    No full text
    IMPORTANCE Medical imaging increased rapidly from 2000 to 2006, but trends in recent years have not been analyzed.OBJECTIVE To evaluate recent trends in medical imaging.DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study of patterns of medical imaging between 2000 and 2016 among 16 million to 21 million patients enrolled annually in 7 US integrated and mixed-model insurance health care systems and for individuals receiving care in Ontario, Canada. EXPOSURES Calendar year and country (United States vs Canada).MAIN OUTCOMES AND MEASURES Use of computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and nuclear medicine imaging. Annual and relative imaging rates by imaging modality, country, and age (children [< 18 years], adults [18-64 years], and older adults [similar to 65 years]).RESULTS Overall, 135 774 532 imaging examinations were included; 5 439 874 (4%) in children, 89 635 312 (66%) in adults, and 40 699 346 (30%) in older adults. Among adults and older adults, imaging rates were significantly higher in 2016 vs 2000 for all imaging modalities other than nuclear medicine. For example, among older adults, CT imaging rates were 428 per 1000 person-years in 2016 vs 204 per 1000 in 2000 in US health care systems and 409 per 1000 vs 161 per 1000 in Ontario; for MRI, 139 per 1000 vs 62 per 1000 in the United States and 89 per 1000 vs 13 per 1000 in Ontario; and for ultrasound, 495 per 1000 vs 324 per 1000 in the United States and 580 per 1000 vs 332 per 1000 in Ontario. Annual growth in imaging rates among US adults and older adults slowed over time for CT (from an 11.6% annual percentage increase among adults and 9.5% among older adults in 2000-2006 to 3.7% among adults in 2013-2016 and 5.2% among older adults in 2014-2016) and for MRI (from 11.4% in 2000-2004 in adults and 11.3% in 2000-2005 in older adults to 1.3% in 2007-2016 in adults and 2.2% in 2005-2016 in older adults). Patterns in Ontario were similar. Among children, annual growth for CT stabilized or declined (United States: from 10.1% in 2000-2005 to 0.8% in 2013-2016; Ontario: from 3.3% in 2000-2006 to -5.3% in 2006-2016), but patterns for MRI were similar to adults. Changes in annual growth in ultrasound were smaller among adults and children in the United States and Ontario compared with CT and MRI. Nuclear medicine imaging declined in adults and children after 2006.CONCLUSIONS AND RELEVANCE From 2000 to 2016 in 7 US integrated and mixed-model health care systems and in Ontario, rates of CT and MRI use continued to increase among adults, but at a slower pace in more recent years. In children, imaging rates continued to increase except for CT, which stabilized or declined in more recent periods. Whether the observed imaging utilization was appropriate or was associated with improved patient outcomes is unknown

    Quantifying cancer risk from exposures to medical imaging in the Risk of Pediatric and Adolescent Cancer Associated with Medical Imaging (RIC) Study: research methods and cohort profile

    No full text
    PurposeThe Risk of Pediatric and Adolescent Cancer Associated with Medical Imaging (RIC) Study is quantifying the association between cumulative radiation exposure from fetal and/or childhood medical imaging and subsequent cancer risk. This manuscript describes the study cohorts and research methods.MethodsThe RIC Study is a longitudinal study of children in two retrospective cohorts from 6 U.S. healthcare systems and from Ontario, Canada over the period 1995-2017. The fetal-exposure cohort includes children whose mothers were enrolled in the healthcare system during their entire pregnancy and followed to age 20. The childhood-exposure cohort includes children born into the system and followed while continuously enrolled. Imaging utilization was determined using administrative data. Computed tomography (CT) parameters were collected to estimate individualized patient organ dosimetry. Organ dose libraries for average exposures were constructed for radiography, fluoroscopy, and angiography, while diagnostic radiopharmaceutical biokinetic models were applied to estimate organ doses received in nuclear medicine procedures. Cancers were ascertained from local and state/provincial cancer registry linkages.ResultsThe fetal-exposure cohort includes 3,474,000 children among whom 6,606 cancers (2394 leukemias) were diagnosed over 37,659,582 person-years; 0.5% had in utero exposure to CT, 4.0% radiography, 0.5% fluoroscopy, 0.04% angiography, 0.2% nuclear medicine. The childhood-exposure cohort includes 3,724,632 children in whom 6,358 cancers (2,372 leukemias) were diagnosed over 36,190,027 person-years; 5.9% were exposed to CT, 61.1% radiography, 6.0% fluoroscopy, 0.4% angiography, 1.5% nuclear medicine.ConclusionThe RIC Study is poised to be the largest study addressing risk of childhood and adolescent cancer associated with ionizing radiation from medical imaging, estimated with individualized patient organ dosimetry

    Effect of transcatheter aortic valve implantation vs surgical aortic valve replacement on all-cause mortality in patients with aortic stenosis

    No full text
    Importance: Transcatheter aortic valve implantation (TAVI) is a less invasive alternative to surgical aortic valve replacement and is the treatment of choice for patients at high operative risk. The role of TAVI in patients at lower risk is unclear. Objective: To determine whether TAVI is noninferior to surgery in patients at moderately increased operative risk. Design, Setting, and Participants: In this randomized clinical trial conducted at 34 UK centers, 913 patients aged 70 years or older with severe, symptomatic aortic stenosis and moderately increased operative risk due to age or comorbidity were enrolled between April 2014 and April 2018 and followed up through April 2019. Interventions: TAVI using any valve with a CE mark (indicating conformity of the valve with all legal and safety requirements for sale throughout the European Economic Area) and any access route (n = 458) or surgical aortic valve replacement (surgery; n = 455). Main Outcomes and Measures: The primary outcome was all-cause mortality at 1 year. The primary hypothesis was that TAVI was noninferior to surgery, with a noninferiority margin of 5% for the upper limit of the 1-sided 97.5% CI for the absolute between-group difference in mortality. There were 36 secondary outcomes (30 reported herein), including duration of hospital stay, major bleeding events, vascular complications, conduction disturbance requiring pacemaker implantation, and aortic regurgitation. Results: Among 913 patients randomized (median age, 81 years [IQR, 78 to 84 years]; 424 [46%] were female; median Society of Thoracic Surgeons mortality risk score, 2.6% [IQR, 2.0% to 3.4%]), 912 (99.9%) completed follow-up and were included in the noninferiority analysis. At 1 year, there were 21 deaths (4.6%) in the TAVI group and 30 deaths (6.6%) in the surgery group, with an adjusted absolute risk difference of −2.0% (1-sided 97.5% CI, −∞ to 1.2%; P &lt; .001 for noninferiority). Of 30 prespecified secondary outcomes reported herein, 24 showed no significant difference at 1 year. TAVI was associated with significantly shorter postprocedural hospitalization (median of 3 days [IQR, 2 to 5 days] vs 8 days [IQR, 6 to 13 days] in the surgery group). At 1 year, there were significantly fewer major bleeding events after TAVI compared with surgery (7.2% vs 20.2%, respectively; adjusted hazard ratio [HR], 0.33 [95% CI, 0.24 to 0.45]) but significantly more vascular complications (10.3% vs 2.4%; adjusted HR, 4.42 [95% CI, 2.54 to 7.71]), conduction disturbances requiring pacemaker implantation (14.2% vs 7.3%; adjusted HR, 2.05 [95% CI, 1.43 to 2.94]), and mild (38.3% vs 11.7%) or moderate (2.3% vs 0.6%) aortic regurgitation (adjusted odds ratio for mild, moderate, or severe [no instance of severe reported] aortic regurgitation combined vs none, 4.89 [95% CI, 3.08 to 7.75]). Conclusions and Relevance: Among patients aged 70 years or older with severe, symptomatic aortic stenosis and moderately increased operative risk, TAVI was noninferior to surgery with respect to all-cause mortality at 1 year. Trial Registration: isrctn.com Identifier: ISRCTN57819173
    corecore