53 research outputs found

    Amplification Dynamics of Platy-1 Retrotransposons in the Cebidae Platyrrhine Lineage

    Get PDF
    Platy-1 elements are Platyrrhine-specific, short interspersed elements originally discovered in the Callithrix jacchus (common marmoset) genome. To date, only the marmoset genome has been analyzed for Platy-1 repeat content. Here, we report full-length Platy-1 insertions in other New World monkey (NWM) genomes (Saimiri boliviensis, squirrel monkey; Cebus imitator, capuchin monkey; and Aotus nancymaae, owl monkey) and analyze the amplification dynamics of lineage-specific Platy-1 insertions. A relatively small number of full-length and lineage-specific Platy-1 elements were found in the squirrel, capuchin, and owl monkey genomes compared with the marmoset genome. In addition, only a few older Platy-1 subfamilies were recovered in this study, with no Platy-1 subfamilies younger than Platy-1-6. By contrast, 62 Platy-1 subfamilies were discovered in the marmoset genome. All of the lineage-specific insertions found in the squirrel and capuchin monkeys were fixed present. However, similar to 15% of the lineage-specific Platy-1 loci in Aotus were polymorphic for insertion presence/absence. In addition, two new Platy-1 subfamilies were identified in the owl monkey genome with low nucleotide divergences compared with their respective consensus sequences, suggesting minimal ongoing retrotransposition in the Aotus genus and no current activity in the Saimiri, Cebus, and Sapajus genera. These comparative analyses highlight the finding that the high number of Platy-1 elements discovered in the marmoset genome is an exception among NWM analyzed thus far, rather than the rule. Future studies are needed to expand upon our knowledge of Platy-1 amplification in other NWM genomes

    Amplification dynamics of platy-1 retrotransposons in the cebidae platyrrhine lineage

    Get PDF
    © 2019 The Author(s). Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. Platy-1 elements are Platyrrhine-specific, short interspersed elements originally discovered in the Callithrix jacchus (common marmoset) genome. To date,only themarmoset genomehas been analyzed for Platy-1 repeat content.Here,we report full-length Platy-1 insertions in other NewWorld monkey (NWM) genomes (Saimiri boliviensis, squirrel monkey; Cebus imitator, capuchin monkey; and Aotus nancymaae, owl monkey) and analyze the amplification dynamics of lineage-specific Platy-1 insertions. A relatively small number of full-length and lineage-specific Platy-1 elements were found in the squirrel, capuchin, and owl monkey genomes compared with the marmoset genome. In addition, only a few older Platy-1 subfamilies were recovered in this study, with no Platy-1 subfamilies younger than Platy-1-6. By contrast, 62 Platy-1 subfamilieswere discovered in themarmoset genome.All of the lineagespecific insertions found in the squirrel and capuchin monkeys were fixed present. However, 15%of the lineage-specific Platy-1 loci in Aotus were polymorphic for insertion presence/absence. In addition, two new Platy-1 subfamilies were identified in the owl monkey genome with low nucleotide divergences compared with their respective consensus sequences, suggesting minimal ongoing retrotransposition in the Aotus genus and no current activity in the Saimiri, Cebus, and Sapajus genera. These comparative analyses highlight the finding that the high number of Platy-1 elements discovered in themarmoset genome is an exception among NWManalyzed thus far, rather than the rule. Future studies are needed to expand upon our knowledge of Platy-1 amplification in other NWM genomes

    A high-quality bonobo genome refines the analysis of hominid evolution

    Get PDF
    The divergence of chimpanzee and bonobo provides one of the few examples of recent hominid speciation1,2. Here we describe a fully annotated, high-quality bonobo genome assembly, which was constructed without guidance from reference genomes by applying a multiplatform genomics approach. We generate a bonobo genome assembly in which more than 98% of genes are completely annotated and 99% of the gaps are closed, including the resolution of about half of the segmental duplications and almost all of the full-length mobile elements. We compare the bonobo genome to those of other great apes1,3,4,5 and identify more than 5,569 fixed structural variants that specifically distinguish the bonobo and chimpanzee lineages. We focus on genes that have been lost, changed in structure or expanded in the last few million years of bonobo evolution. We produce a high-resolution map of incomplete lineage sorting and estimate that around 5.1% of the human genome is genetically closer to chimpanzee or bonobo and that more than 36.5% of the genome shows incomplete lineage sorting if we consider a deeper phylogeny including gorilla and orangutan. We also show that 26% of the segments of incomplete lineage sorting between human and chimpanzee or human and bonobo are non-randomly distributed and that genes within these clustered segments show significant excess of amino acid replacement compared to the rest of the genome

    Alu insertion polymorphisms shared by Papio baboons and Theropithecus gelada reveal an intertwined common ancestry

    Get PDF
    © 2019 The Author(s). Background: Baboons (genus Papio) and geladas (Theropithecus gelada) are now generally recognized as close phylogenetic relatives, though morphologically quite distinct and generally classified in separate genera. Primate specific Alu retrotransposons are well-established genomic markers for the study of phylogenetic and population genetic relationships. We previously reported a computational reconstruction of Papio phylogeny using large-scale whole genome sequence (WGS) analysis of Alu insertion polymorphisms. Recently, high coverage WGS was generated for Theropithecus gelada. The objective of this study was to apply the high-Throughput poly-Detect method to computationally determine the number of Alu insertion polymorphisms shared by T. gelada and Papio, and vice versa, by each individual Papio species and T. gelada. Secondly, we performed locus-specific polymerase chain reaction (PCR) assays on a diverse DNA panel to complement the computational data. Results: We identified 27,700 Alu insertions from T. gelada WGS that were also present among six Papio species, with nearly half (12,956) remaining unfixed among 12 Papio individuals. Similarly, each of the six Papio species had species-indicative Alu insertions that were also present in T. gelada. In general, P. kindae shared more insertion polymorphisms with T. gelada than did any of the other five Papio species. PCR-based genotype data provided additional support for the computational findings. Conclusions: Our discovery that several thousand Alu insertion polymorphisms are shared by T. gelada and Papio baboons suggests a much more permeable reproductive barrier between the two genera then previously suspected. Their intertwined evolution likely involves a long history of admixture, gene flow and incomplete lineage sorting

    Cebidae

    No full text
    Phylogenetic relationships among Cebidae species of platyrrhine primates are presently under debate. Studies prior to whole genome sequence (WGS) availability utilizing unidirectional Alu repeats linked Callithrix and Saguinus as sister taxa, based on a limited number of genetic markers and specimens, while the relative positions of Cebus, Saimiri and Aotus remained controversial. Multiple WGS allowed computational detection of Alu-genome junctions, however random mutation and evolutionary decay of these short-read segments prevented phylogenetic resolution. In this study, WGS for four Cebidae genomes of marmoset, squirrel monkey, owl monkey and capuchin were analyzed for full-length Alu elements and each locus was compared to the other three genomes in all possible combinations using orthologous region sequence alignments. Over 2000 candidates were aligned and subjected to visual inspection. Approximately 34% passed inspection and were considered shared in their respective category, 48% failed due to the target being present in all four genomes, having N\u27s in the sequence or other sequence quality anomalies, and 18% were determined to represent near parallel insertions (NP). Wet bench locus specific PCR confirmed the presence of shared Alu insertions in all phylogenetically informative categories, providing evidence of extensive incomplete lineage sorting (ILS) and an abundance of Alu proliferation during the complex radiation of Cebidae taxa

    Cebidae Element Alignments and a Complex Non-Human Primate Radiation

    No full text
    Phylogenetic relationships among Cebidae species of platyrrhine primates are presently under debate. Studies prior to whole genome sequence (WGS) availability utilizing unidirectional repeats linked and as sister taxa, based on a limited number of genetic markers and specimens, while the relative positions of , and remained controversial. Multiple WGS allowed computational detection of -genome junctions, however random mutation and evolutionary decay of these short-read segments prevented phylogenetic resolution. In this study, WGS for four Cebidae genomes of marmoset, squirrel monkey, owl monkey and capuchin were analyzed for full-length elements and each locus was compared to the other three genomes in all possible combinations using orthologous region sequence alignments. Over 2000 candidates were aligned and subjected to visual inspection. Approximately 34% passed inspection and were considered shared in their respective category, 48% failed due to the target being present in all four genomes, having N\u27s in the sequence or other sequence quality anomalies, and 18% were determined to represent near parallel insertions (NP). Wet bench locus specific PCR confirmed the presence of shared insertions in all phylogenetically informative categories, providing evidence of extensive incomplete lineage sorting (ILS) and an abundance of proliferation during the complex radiation of Cebidae taxa

    Cebidae Alu Element Alignments and a Complex Non-Human Primate Radiation

    No full text
    Phylogenetic relationships among Cebidae species of platyrrhine primates are presently under debate. Studies prior to whole genome sequence (WGS) availability utilizing unidirectional Alu repeats linked Callithrix and Saguinus as sister taxa, based on a limited number of genetic markers and specimens, while the relative positions of Cebus, Saimiri and Aotus remained controversial. Multiple WGS allowed computational detection of Alu-genome junctions, however random mutation and evolutionary decay of these short-read segments prevented phylogenetic resolution. In this study, WGS for four Cebidae genomes of marmoset, squirrel monkey, owl monkey and capuchin were analyzed for full-length Alu elements and each locus was compared to the other three genomes in all possible combinations using orthologous region sequence alignments. Over 2000 candidates were aligned and subjected to visual inspection. Approximately 34% passed inspection and were considered shared in their respective category, 48% failed due to the target being present in all four genomes, having N’s in the sequence or other sequence quality anomalies, and 18% were determined to represent near parallel insertions (NP). Wet bench locus specific PCR confirmed the presence of shared Alu insertions in all phylogenetically informative categories, providing evidence of extensive incomplete lineage sorting (ILS) and an abundance of Alu proliferation during the complex radiation of Cebidae taxa

    Effectiveness of differing trap types for the detection of emerald ash borer (Coleoptera: Buprestidae)

    No full text
    The early detection of populations of a forest pest is important to begin initial control efforts, minimizing the risk of further spread and impact. Emerald ash borer (Agrilus planipennis Fairmaire) is an introduced pestiferous insect of ash (Fraxinus spp. L.) in North America. The effectiveness of trapping techniques, including girdled trap trees with sticky bands and purple prism traps, was tested in areas with low- and high-density populations of emerald ash borer. At both densities, large girdled trap trees (\u3e 30cm diameter at breast height [dbh], 1.37 m in height) captured a higher rate of adult beetles per day than smaller trees. However, the odds of detecting emerald ash borer increased as the dbh of the tree increased by 1 cm for trap trees 15-25 cm dbh. Ash species used for the traps differed in the number of larvae per cubic centimeter ofphloem. Emerald ash borer larvae were more likely to be detected below, compared with above, the crown base of the trap tree. While larval densities within a trap tree were related to the species of ash, adult capture rates were not. These results provide support for focusing state and regional detection programs on the detection of emerald ash borer adults. If bark peeling for larvae is incorporated into these programs, peeling efforts focused below the crown base may increase likelihood of identifying new infestations while reducing labor costs. Associating traps with larger trees (̃25 cm dbh) may increase the odds of detecting low-density populations of emerald ash borer, possibly reducing the time between infestation establishment and implementing management strategies. © 2009 Entonsological Society of America

    Framework of the <em>Alu</em> Subfamily Evolution in the Platyrrhine Three-Family Clade of Cebidae, Callithrichidae, and Aotidae

    No full text
    The history of Alu retroposons has been choreographed by the systematic accumulation of inherited diagnostic nucleotide substitutions to form discrete subfamilies, each having a distinct nucleotide consensus sequence. The oldest subfamily, AluJ, gave rise to AluS after the split between Strepsirrhini and what would become Catarrhini and Platyrrhini. The AluS lineage gave rise to AluY in catarrhines and to AluTa in platyrrhines. Platyrrhine Alu subfamilies Ta7, Ta10, and Ta15 were assigned names based on a standardized nomenclature. However, with the subsequent intensification of whole genome sequencing (WGS), large scale analyses to characterize Alu subfamilies using the program COSEG identified entire lineages of subfamilies simultaneously. The first platyrrhine genome with WGS, the common marmoset (Callithrix jacchus; [caljac3]), resulted in Alu subfamily names sf0 to sf94 in an arbitrary order. Although easily resolved by alignment of the consensus sequences, this naming convention can become increasingly confusing as more genomes are independently analyzed. In this study, we reported Alu subfamily characterization for the platyrrhine three-family clade of Cebidae, Callithrichidae, and Aotidae. We investigated one species/genome from each recognized family of Callithrichidae and Aotidae and of both subfamilies (Cebinae and Saimiriinae) of the family Cebidae. Furthermore, we constructed a comprehensive network of Alu subfamily evolution within the three-family clade of platyrrhines to provide a working framework for future research. Alu expansion in the three-family clade has been dominated by AluTa15 and its derivatives
    corecore