133 research outputs found

    Bidirectional crosstalk between hypoxia-inducible factor and glucocorticoid signalling in zebrafish larvae

    Get PDF
    In the last decades in vitro studies highlighted the potential for crosstalk between Hypoxia-Inducible Factor-(HIF) and glucocorticoid-(GC) signalling pathways. However, how this interplay precisely occurs in vivo is still debated. Here, we use zebrafish larvae (Danio rerio) to elucidate how and to what degree hypoxic signalling affects the endogenous glucocorticoid pathway and vice versa, in vivo. Firstly, our results demonstrate that in the presence of upregulated HIF signalling, both glucocorticoid receptor (Gr) responsiveness and endogenous cortisol levels are repressed in 5 days post fertilisation larvae. In addition, despite HIF activity being low at normoxia, our data show that it already impedes both glucocorticoid activity and levels. Secondly, we further analysed the in vivo contribution of glucocorticoids to HIF activity. Interestingly, our results show that both glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) play a key role in enhancing it. Finally, we found indications that glucocorticoids promote HIF signalling via multiple routes. Cumulatively, our findings allowed us to suggest a model for how this crosstalk occurs in vivo

    Ferredoxin 1b deficiency leads to testis disorganization, impaired spermatogenesis and feminization in zebrafish

    Get PDF
    The roles of steroids in zebrafish sex differentiation, gonadal development and function of the adult gonad are poorly understood. Herein, we have employed a ferredoxin 1b (fdx1b) mutant zebrafish to explore such processes. Fdx1b is an essential electron-providing cofactor to mitochondrial steroidogenic enzymes, which are crucial for glucocorticoid and androgen production in vertebrates. Fdx1b-/- zebrafish mutants develop into viable adults, in which concentrations of androgens and the glucocorticoid, cortisol, are significantly reduced. Adult fdx1b-/- mutant zebrafish display predominantly female secondary sex characteristics but may possess either ovaries or testes, confirming that androgen signaling is dispensable for testicular differentiation in this species, as previously demonstrated in androgen receptor mutant zebrafish. Adult male fdx1b-/- mutant zebrafish do not exhibit characteristic breeding behaviors, and sperm production is reduced, resulting in infertility in standard breeding scenarios. However, eggs collected from wild-type females can be fertilized by the sperm of fdx1b-/- mutant males by IVF. The testes of fdx1b-/- mutant males are disorganized and lack defined seminiferous tubule structure. Expression of several pro-male and spermatogenic genes is decreased in the testes of fdx1b-/- mutant males, including pro-male transcription factor SRY-box 9a (sox9a) and spermatogenic genes insulin-like growth factor 3 (igf3) and insulin-like 3 (insl3). This study establishes an androgen- and cortisol-deficient fdx1b zebrafish mutant as a model for understanding the impacts of steroid deficiency on sex development and reproductive function. This model will be particularly useful for further investigation of the roles of steroids in spermatogenesis, gonadal development and regulation of reproductive behavior, thus enabling further elucidation of the physiological consequences of endocrine disruption in vertebrates

    11β-hydroxylase loss disrupts steroidogenesis and reproductive function in zebrafish

    Get PDF
    The roles of androgens in male reproductive development and function in zebrafish are poorly understood. To investigate this topic we employed CRISPR/Cas9 to generate cyp11c1 (11β-hydroxylase) mutant zebrafish lines. Our study confirms recently published findings from a different cyp11c1-/- mutant zebrafish line, and also reports novel aspects of the phenotype caused by loss of Cyp11c1 function. We report that Cyp11c1-deficient zebrafish display predominantly female secondary sex characteristics, but may possess either ovaries or testes. Moreover, we observed that cyp11c1-/- mutant male zebrafish are profoundly androgen- and cortisol-deficient. These results provide further evidence that androgens are dispensable for testis formation in zebrafish, as has been demonstrated previously in androgen-deficient and androgen-resistant zebrafish. Herein, we show that the testes of cyp11c1-/- mutant zebrafish exhibit a disorganised tubular structure; and for the first time demonstrate that the spermatic ducts, which connect the testes to the urogenital orifice, are severely hypoplastic in androgen-deficient zebrafish. Furthermore, we show that spermatogenesis and characteristic breeding behaviours are impaired in cyp11c1-/- mutant zebrafish. Expression of nanos2, a type A spermatogonia marker, was significantly increased in the testes of Cyp11c1-deficient zebrafish, whereas expression of markers for later stages of spermatogenesis was significantly decreased. These observations indicate that in zebrafish, production of type A spermatogonia is androgen-independent, but differentiation of type A spermatogonia is an androgen-dependent process. Overall, our results demonstrate that whilst androgens are not required for testis formation, they play important roles in determining secondary sexual characteristics, proper organisation of seminiferous tubules, and differentiation of male germ cells

    The P450 side chain cleavage enzyme Cyp11a2 facilitates steroidogenesis in zebrafish

    Get PDF
    Cytochrome P450 side-chain cleavage enzyme, encoded by the CYP11A1 gene, catalyzes the first and rate-limiting step of steroid hormone biosynthesis. Previous morpholino knockdown studies in zebrafish suggested cyp11a2 is a functional equivalent of human CYP11A1 and is essential for interrenal steroidogenesis in zebrafish larvae. The role of Cyp11a2 in adult zebrafish, particularly in gonadal steroidogenesis, remains elusive. To explore the role of Cyp11a2 in adults, we developed zebrafish mutant lines by creating deletions in cyp11a2 using the CRISPR/Cas9 genomic engineering approach. Homozygous cyp11a2 mutant zebrafish larvae showed an upregulation of the hypothalamic–pituitary–interrenal axis. Furthermore, these Cyp11a2-deficient zebrafish demonstrated profound glucocorticoid and androgen deficiencies. Cyp11a2 homozygotes only developed into males with feminized secondary sex characteristics. Adult cyp11a2^-/- mutant fish showed a lack of natural breeding behaviors. Histological characterization revealed disorganized testicular structure and significantly decreased numbers of mature spermatozoa. These findings are further supported by the downregulation of the expression of several pro-male genes in the testes of cyp11a2 homozygous zebrafish, including sox9a, dmrt1 and amh. Moreover, the spermatogonia markers nanos2 and piwil1 were upregulated, while the spermatocytes marker sycp3 and spermatids marker odf3b were downregulated in the testes of cyp11a2 homozygous mutants. Our expression analysis is consistent with our histological studies, suggesting that spermatogonia are the predominant cell types in the testes of cyp11a2 homozygous mutants. Our work thus demonstrates the crucial role of Cyp11a2 in interrenal and gonadal steroidogenesis in zebrafish larvae and adults

    The A-ring reduction of 11-ketotestosterone is efficiently catalysed by AKR1D1 and SRD5A2 but not SRD5A1

    Get PDF
    Testosterone and its 5α-reduced form, 5α-dihydrotestosterone, were previously thought to represent the only active androgens in humans. However, recent studies have shown that the potent androgen, 11-ketotestosterone, derived from the adrenal androgen precursor, 11β-hydroxyandrostenedione, may in fact serve as the primary androgen in healthy women. Yet, despite recent renewed interest in these steroids, their downstream metabolism has remained undetermined. We therefore set out to investigate the metabolism of 11-ketotestosterone by characterising the 5α- or 5β-reduction commitment step. We show that inactivation of 11-ketotestosterone is predominantly driven by AKR1D1, which efficiently catalyses the 5β-reduction of 11-ketotestosterone, committing it to a metabolic pathway that terminates in 11-ketoetiocholanolone. We demonstrate that 5α-reduction of 11-ketotestosterone is catalysed by SRD5A2, but not SRD5A1, and terminates in 11-ketoandrosterone, but is only responsible for a minority of 11-ketotestosterone inactivation. However, as 11-ketoetiocholanolone is also generated by the metabolism of the glucocorticoid cortisone, 11-ketoandrosterone should be considered a more specific urinary marker of 11-ketotestosterone production

    Genetic disruption of 21-hydroxylase in zebrafish causes interrenal hyperplasia

    Get PDF
    Congenital adrenal hyperplasia is a group of common inherited disorders leading to glucocorticoid deficiency. Most cases are caused by 21-hydroxylase deficiency (21OHD). The systemic consequences of imbalanced steroid hormone biosynthesis due to severe 21OHD remains poorly understood. Therefore, we have developed a zebrafish model for 21OHD, which focuses on the impairment of glucocorticoid biosynthesis. A single 21-hydroxylase gene (cyp21a2) is annotated in the zebrafish genome based on sequence homology. Our in silico analysis of the Cyp21a2 protein sequence suggests a sufficient degree of similarity for the usage of zebrafish cyp21a2 to model aspects of human 21OHD in vivo. We determined the spatio-temporal expression patterns of cyp21a2 by whole mount in situ hybridisation and RT-PCR throughout early development. Early cyp21a2 expression is restricted to the interrenal gland (zebrafish adrenal counterpart) and the brain. To further explore the in vivo consequences of 21-hydroxylase deficiency we created several cyp21a2 null-allele zebrafish lines employing a transcription activator-like effector nuclease genomic engineering strategy. Homozygous mutant zebrafish larvae showed an upregulation of the hypothalamic-pituitary-interrrenal axis and interrenal hyperplasia. Furthermore, Cyp21A2-deficient larvae had a typical steroid profile with reduced concentrations of cortisol and increased concentrations of 17-hydroxyprogesterone and 21-deoxycortisol. Affected larvae showed an upregulation of the hypothalamic-pituitary-interrrenal axis and interrenal hyperplasia. Downregulation of the glucocorticoid-responsive genes pck1 and fkbp5 indicated systemic glucocorticoid deficiency. Our work demonstrates the crucial role of Cyp21a2 in glucocorticoid biosynthesis in zebrafish larvae and establishes a novel in vivo model allowing for studies of systemic consequences of altered steroid hormone synthesis

    Modified-Release and Conventional Glucocorticoids and Diurnal Androgen Excretion in Congenital Adrenal Hyperplasia

    Get PDF
    Context: The classic androgen synthesis pathway proceeds via dehydroepiandrosterone, androstenedione, and testosterone to 5α-dihydrotestosterone. However, 5α-dihydrotestosterone synthesis can also be achieved by an alternative pathway originating from 17α-hydroxyprogesterone (17OHP), which accumulates in congenital adrenal hyperplasia (CAH). Similarly, recent work has highlighted androstenedione-derived 11-oxygenated 19-carbon steroids as active androgens, and in CAH, androstenedione is generated directly from 17OHP. The exact contribution of alternative pathway activity to androgen excess in CAH and its response to glucocorticoid (GC) therapy is unknown. Objective: We sought to quantify classic and alternative pathway-mediated androgen synthesis in CAH, their diurnal variation, and their response to conventional GC therapy and modified-release hydrocortisone. Methods: We used urinary steroid metabolome profiling by gas chromatography–mass spectrometry for 24-hour steroid excretion analysis, studying the impact of conventional GCs (hydrocortisone, prednisolone, and dexamethasone) in 55 adults with CAH and 60 controls. We studied diurnal variation in steroid excretion by comparing 8-hourly collections (23:00–7:00, 7:00–15:00, and 15:00–23:00) in 16 patients with CAH taking conventional GCs and during 6 months of treatment with modified-release hydrocortisone, Chronocort. Results: Patients with CAH taking conventional GCs showed low excretion of classic pathway androgen metabolites but excess excretion of the alternative pathway signature metabolites 3α,5α-17-hydroxypregnanolone and 11β-hydroxyandrosterone. Chronocort reduced 17OHP and alternative pathway metabolite excretion to near-normal levels more consistently than other GC preparations. Conclusions: Alternative pathway-mediated androgen synthesis significantly contributes to androgen excess in CAH. Chronocort therapy appears superior to conventional GC therapy in controlling androgen synthesis via alternative pathways through attenuation of their major substrate, 17OHP
    • …
    corecore