5 research outputs found

    Sign switching of dimer correlations in SrCu2(BO3)2 under hydrostatic pressure

    No full text
    Magnetic and vibrational excitations in SrCu2(BO3)2 are studied using Raman spectroscopy at hydrostatic pressures up to 34 kbar and temperatures down to 2.6 K. The frequency of a particular optical phonon, the so-called pantograph mode, shows a very strong anomalous temperature dependence below about 40 K. We link the magnitude of the effect to the magnetic exchange energy on the dimer bonds in the Sutherland-Shastry spin lattice in this material. The corresponding dimer spin correlations are quantitatively estimated and found to be strongly pressure dependent. At around P2∼22 kbar they switch from antiferromagnetic to being predominantly ferromagnetic.ISSN:2643-156

    Low Power Compact 3D-Constructed AlScN Piezoelectric MEMS Mirrors for Various Scanning Strategies

    No full text
    In this paper, the newly developed 3D-constructed AlScN piezoelectric MEMS mirror is presented. This paper describes the structure and driving mechanism of the proposed mirror device, covering its driving characteristics in both quasi-static and resonant scan modes. Particularly, this paper deals with various achievable scan patterns including 1D line scan and 2D area scan capabilities and driving methods to realize each scanning strategy. Bidirectional quasi-static actuation along horizontal, vertical, and diagonal scanning directions was experimentally characterized and even under a low voltage level of ±20 V, a total optical scan angle of 10.4° was achieved. In addition, 1D line scanning methods using both resonant and non-resonant frequencies were included and a total optical scan angle of 14° was obtained with 100 mVpp under out-of-phase actuation condition. Furthermore, 2D scan patterns including Lissajous, circular and spiral, and raster scans were realized. Diverse scan patterns were realized with the presented AlScN-based MEMS mirror device even under a low level of applied voltage. Further experiments using high voltage up to ±120 V to achieve an enhanced quasi-static scan angle of more than 20° are ongoing to ensure repeatability. This multi-functional MEMS mirror possesses the potential to implement multiple scanning strategies suitable for various application purposes

    Dynamic computation of value signals via a common neural network in multi-attribute decision-making

    No full text
    Studies in decision neuroscience have identified robust neural representations for the value of choice options. However, overall values often depend on multiple attributes, and it is not well understood how the brain evaluates different attributes and integrates them to combined values. In particular, it is not clear whether attribute values are computed in distinct attribute-specific regions or within the general valuation network known to process overall values. Here, we used a functional magnetic resonance imaging choice task in which abstract stimuli had to be evaluated based on variations of the attributes color and motion. The behavioral data showed that participants responded faster when overall values were high and attribute value differences were low. On the neural level, we did not find that attribute values were systematically represented in areas V4 and V5, even though these regions are associated with attribute-specific processing of color and motion, respectively. Instead, attribute values were associated with activity in the posterior cingulate cortex, ventral striatum and posterior inferior temporal gyrus. Furthermore, overall values were represented in dorsolateral and ventromedial prefrontal cortex, and attribute value differences in dorsomedial prefrontal cortex, which suggests that these regions play a key role for the neural integration of attribute values
    corecore