19 research outputs found

    Synergistic epistasis enhances cooperativity of mutualistic interspecies interactions

    Get PDF
    Frequent fluctuations in sulfate availability rendered syntrophic interactions between the sulfate reducing bacterium Desulfovibrio vulgaris (Dv) and the methanogenic archaeon Methanococcus maripaludis (Mm) unsustainable. By contrast, prolonged laboratory evolution in obligate syntrophy conditions improved the productivity of this community but at the expense of erosion of sulfate respiration (SR). Hence, we sought to understand the evolutionary trajectories that could both increase the productivity of syntrophic interactions and sustain SR. We combined a temporal and combinatorial survey of mutations accumulated over 1000 generations of 9 independently-evolved communities with analysis of the genotypic structure for one community down to the single-cell level. We discovered a high level of parallelism across communities despite considerable variance in their evolutionary trajectories and the perseverance of a rare SR+ Dv lineage within many evolution lines. An in-depth investigation revealed that synergistic epistasis across Dv and Mm genotypes had enhanced cooperativity within SR- and SR+ assemblages, allowing their co-existence as r- and K-strategists, respectively

    Synergistic epistasis enhances the co-operativity of mutualistic interspecies interactions

    Get PDF
    Early evolution of mutualism is characterized by big and predictable adaptive changes, including the specialization of interacting partners, such as through deleterious mutations in genes not required for metabolic cross-feeding. We sought to investigate whether these early mutations improve cooperativity by manifesting in synergistic epistasis between genomes of the mutually interacting species. Specifically, we have characterized evolutionary trajectories of syntrophic interactions of Desulfovibrio vulgaris (Dv) with Methanococcus maripaludis (Mm) by longitudinally monitoring mutations accumulated over 1000 generations of nine independently evolved communities with analysis of the genotypic structure of one community down to the single-cell level. We discovered extensive parallelism across communities despite considerable variance in their evolutionary trajectories and the perseverance within many evolution lines of a rare lineage of Dv that retained sulfate-respiration (SR+) capability, which is not required for metabolic cross-feeding. An in-depth investigation revealed that synergistic epistasis across pairings of Dv and Mm genotypes had enhanced cooperativity within SR− and SR+ assemblages, enabling their coexistence within the same community. Thus, our findings demonstrate that cooperativity of a mutualism can improve through synergistic epistasis between genomes of the interacting species, enabling the coexistence of mutualistic assemblages of generalists and their specialized variants

    Ecology of the Genus Burkholderia in the Soil

    Full text link

    Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans

    Get PDF
    Plant roots and shoots harbor complex bacterial communities. Early seed and plantlet colonization plays a key role in determining which bacterial populations will successfully invade plant tissues, yet the mechanisms enabling plants to select for beneficial rather than harmful populations are largely unknown. In this study, we demonstrate a role of oxalate as a determinant in this selection process, using members of the genus Burkholderia as model organisms. Oxalotrophy, i.e., the ability to use oxalate as a carbon source, was found to be a property strictly associated with plant-beneficial species of the Burkholderia genus, while plant pathogenic (B. glumae, B. plantarii) or human opportunistic pathogens (Burkholderia cepacia complex strains) were unable to degrade oxalate. We further show that oxalotrophy is required for successful plant colonization by the broad host endophyte Burkholderia phytofirmans PsJN: an engineered Δoxc mutant, which lost the ability to grow on oxalate, was significantly impaired in early colonization of both lupin and maize compared with the wild-type. This work suggests that in addition to the role of oxalate in heavy metal tolerance of plants and in virulence of phytopathogenic fungi, it is also involved in specifically recruiting plant-beneficial members from complex bacterial communities

    The Chemistry of Stress: Understanding the ‘Cry for Help’ of Plant Roots

    No full text
    Plants are faced with various biotic and abiotic stresses during their life cycle. To withstand these stresses, plants have evolved adaptive strategies including the production of a wide array of primary and secondary metabolites. Some of these metabolites can have direct defensive effects, while others act as chemical cues attracting beneficial (micro)organisms for protection. Similar to aboveground plant tissues, plant roots also appear to have evolved “a cry for help” response upon exposure to stress, leading to the recruitment of beneficial microorganisms to help minimize the damage caused by the stress. Furthermore, emerging evidence indicates that microbial recruitment to the plant roots is, at least in part, mediated by quantitative and/or qualitative changes in root exudate composition. Both volatile and water-soluble compounds have been implicated as important signals for the recruitment and activation of beneficial root-associated microbes. Here we provide an overview of our current understanding of belowground chemical communication, particularly how stressed plants shape its protective root microbiome

    Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations

    Full text link
    Bacteria belonging to the genus Burkholderia are highly versatile with respect to their ecological niches and lifestyles, ranging from nodulating tropical plants to causing melioidosis and fatal infections in cystic fibrosis patients. Despite the clinical importance and agronomical relevance of Burkholderia species, information about the factors influencing their occurrence, abundance and diversity in the environment is scarce. Recent findings have demonstrated that pH is the main predictor of soil bacterial diversity and community structure, with the highest diversity observed in neutral pH soils. As many Burkholderia species have been isolated from low pH environments, we hypothesized that acid tolerance may be a general feature of this genus, and pH a good predictor of their occurrence in soils. Using a combination of environmental surveys at trans-continental and local scales, as well as in vitro assays, we show that, unlike most bacteria, Burkholderia species have a competitive advantage in acidic soils, but are outcompeted in alkaline soils. Physiological assays and diversity analysis based on 16S rRNA clone libraries demonstrate that pH tolerance is a general phenotypic trait of the genus Burkholderia. Our results provide a basis for building a predictive understanding of the biogeographical patterns exhibited by Burkholderia sp

    Seasonal activities of the phyllosphere microbiome of perennial crops

    No full text
    Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass and miscanthus, and to quantify their activities over two growing seasons for switchgrass. We use metagenome and metatranscriptome sequencing and curate 40 medium- and high-quality metagenome-assembled-genomes (MAGs). We find that classes represented by these MAGs (Actinomycetia, Alpha- and Gamma- Proteobacteria, and Bacteroidota) are active in the late season, and upregulate transcripts for short-chain dehydrogenase, molybdopterin oxidoreductase, and polyketide cyclase. Stress-associated pathways are expressed for most MAGs, suggesting engagement with the host environment. We also detect seasonally activated biosynthetic pathways for terpenes and various non-ribosomal peptide pathways that are poorly annotated. Our findings support that leaf-associated bacterial populations are seasonally dynamic and responsive to host cues.This article is published as Howe, Adina, Nejc Stopnisek, Shane K. Dooley, Fan Yang, Keara L. Grady, and Ashley Shade. "Seasonal activities of the phyllosphere microbiome of perennial crops." Nature Communications 14, no. 1 (2023): 1039. DOI: 10.1038/s41467-023-36515-y. Copyright 2023 The Author(s). Attribution 4.0 International (CC BY 4.0). Posted with permission

    The Tomato's Tale: Exploring Taxonomy, Biogeography, Domestication, and Microbiome for Enhanced Resilience

    No full text
    Plant domestication and breeding not only resulted in multiple phenotypic changes but also impacted the agricultural ecosystems in which our current crops are cultivated. Most crops to date rely on the extensive use of fertilizers and pesticides to support crop growth and health. To minimize the environmental impact of these management practices, the plant microbiome has gained renewed attention as a large yet untapped resource of microorganisms with beneficial effects on plant growth and health. In the past decade, it has become evident that the microbiome of plants plays a key role in nutrient acquisition, plant development, and tolerance to diverse abiotic and biotic stresses. Here, we review past and present knowledge of the microbiome of tomato as a model for unraveling the functional potential of plant microbiomes, the impact of domestication, and the underlying genetics of microbiome assembly and activity. We also provide perspectives on how this knowledge can be adopted to enhance crop productivity and strengthen the sustainability of agricultural management practices. [Graphic: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license

    An automated multiplexed turbidometric and data collection system for measuring growth kinetics of anaerobes dependent on gaseous substrates

    No full text
    Standard methods of monitoring the growth kinetics of anaerobic microorganisms are generally impractical when there is a protracted or indeterminate period of active growth, and when high numbers of samples or replications are required. As part of our studies of the adaptive evolution of a simple anaerobic syntrophic mutualism, requiring the characterization of many isolates and alternative syntrophic pairings, we developed a multiplexed growth monitoring system using a combination of commercially available electronics and custom designed circuitry and materials. This system automatically monitors up to 64 sealed, and as needed pressurized, culture tubes and reports the growth data in real-time through integration with a customized relational database. The utility of this system was demonstrated by resolving minor differences in growth kinetics associated with the adaptive evolution of a simple microbial community comprised of a sulfate reducing bacterium, Desulfovibrio vulgaris, grown in syntrophic association with Methanococcus maripaludis, a hydrogenotrophic methanogen
    corecore