3 research outputs found

    Estimating the extrinsic incubation period of malaria using a mechanistic model of sporogony

    No full text
    During sporogony, malaria-causing parasites infect a mosquito, reproduce and migrate to the mosquito salivary glands where they can be transmitted the next time blood feeding occurs. The time required for sporogony, known as the extrinsic incubation period (EIP), is an important determinant of malaria transmission intensity. The EIP is typically estimated as the time for a given percentile, x, of infected mosquitoes to develop salivary gland sporozoites (the infectious parasite life stage), which is denoted by EIPx. Many mechanisms, however, affect the observed sporozoite prevalence including the human-to-mosquito transmission probability and possibly differences in mosquito mortality according to infection status. To account for these various mechanisms, we present a mechanistic mathematical model, which explicitly models key processes at the parasite, mosquito and observational scales. Fitting this model to experimental data, we find greater variation in the EIP than previously thought: we estimated the range between EIP10 and EIP90 (at 27°C) as 4.5 days compared to 0.9 days using existing statistical methods. This pattern holds over the range of study temperatures included in the dataset. Increasing temperature from 21°C to 34°C decreased the EIP50 from 16.1 to 8.8 days. Our work highlights the importance of mechanistic modelling of sporogony to (1) improve estimates of malaria transmission under different environmental conditions or disease control programs and (2) evaluate novel interventions that target the mosquito life stages of the parasite

    Estimating the extrinsic incubation period of malaria using a mechanistic model of sporogony

    No full text
    During sporogony, malaria-causing parasites infect a mosquito, reproduce and migrate to the mosquito salivary glands where they can be transmitted the next time blood feeding occurs. The time required for sporogony, known as the extrinsic incubation period (EIP), is an important determinant of malaria transmission intensity. The EIP is typically estimated as the time for a given percentile, x, of infected mosquitoes to develop salivary gland sporozoites (the infectious parasite life stage), which is denoted by EIPx. Many mechanisms, however, affect the observed sporozoite prevalence including the human-to-mosquito transmission probability and possibly differences in mosquito mortality according to infection status. To account for these various mechanisms, we present a mechanistic mathematical model, which explicitly models key processes at the parasite, mosquito and observational scales. Fitting this model to experimental data, we find greater variation in the EIP than previously thought: we estimated the range between EIP10 and EIP90 (at 27°C) as 4.5 days compared to 0.9 days using existing statistical methods. This pattern holds over the range of study temperatures included in the dataset. Increasing temperature from 21°C to 34°C decreased the EIP50 from 16.1 to 8.8 days. Our work highlights the importance of mechanistic modelling of sporogony to (1) improve estimates of malaria transmission under different environmental conditions or disease control programs and (2) evaluate novel interventions that target the mosquito life stages of the parasite

    Using patient biomarker time series to determine mortality risk in hospitalised COVID-19 patients: a comparative analysis across two New York hospitals

    No full text
    This is the author accepted manuscriptA large range of prognostic models for determining the risk of COVID-19 patient mortality exist, but these typically restrict the set of biomarkers considered to measurements available at patient admission. Additionally, many of these models are trained and tested on patient cohorts from a single hospital, raising questions about the generalisability of results. We used a Bayesian Markov model to analyse time series data of biomarker measurements taken throughout the duration of a COVID-19 patient's hospitalisation for n=1540 patients from two hospitals in New York: State University of New York (SUNY) Downstate Health Sciences University and Maimonides Medical Center. Our main focus was to quantify the mortality risk associated with both static (e.g. demographic and patient history variables) and dynamic factors (e.g. changes in biomarkers) throughout hospitalisation, by so doing, to explain the observed patterns of mortality. By using our model to make predictions across the hospitals, we assessed how predictive factors generalised between the two cohorts. The individual dynamics of the measurements and their associated mortality risk were remarkably consistent across the hospitals. The model accuracy in predicting patient outcome (death or discharge) was 72.3% (predicting SUNY; posterior median accuracy) and 71.3% (predicting Maimonides) respectively. Model sensitivity was higher for detecting patients who would go on to be discharged (78.7%) versus those who died (61.8%). Our results indicate the utility of including dynamic clinical measurements when assessing patient mortality risk but also highlight the difficulty of identifying high risk patients
    corecore