45 research outputs found

    Ideotyping integrated aquaculture systems to balance soil nutrients

    Get PDF
    Due to growing land scarcity and lack of nutrient inputs, African farmers switched from shifting cultivation to continuous cropping and extended crop area by bringing fragile lands such as river banks and hill slopes into production. This accelerated soil fertility decline caused by erosion, harvesting and insufficient nutrient replenishment. We explored the feasibility to reduce nutrient depletion by increasing nutrient utilization efficiencies, while diversifying and increasing food production through the development of integrated aquaculture – agriculture (IAA). Considering the climatic conditions prevailing in Kenyan highlands, aquaculture production scenarios were ideotyped per agro-ecological zone. These aquaculture production scenarios were integrated into existing NUTrient MONitoring (NUTMON) farm survey data for the area. The nutrient balances and flows of the resulting IAA-systems were compared to present land use. The effects of IAA development on nutrient depletion and total food production were evaluated. With the development of IAA systems, nutrient depletion rates dropped by 23–35%, agricultural production increased by 2–26% and overall farm food production increased by 22–70%. The study demonstrates that from a bio-physical point of view, the development of IAA-systems in Africa is technically possible and could raise soil fertility and total farm production. Further studies that evaluate the economic feasibility and impacts on the livelihood of farming households are recommended

    Desertification-Scientific versus political realities

    No full text
    Desertification is defined as land degradation occurring in the global drylands. It is one of the global problems targeted under the Sustainable Development Goals (SDG 15). The aim of this article is to review the history of desertification and to evaluate the scientific evidence for desertification spread and severity. First quantitative estimates of the global extent and severity of desertification were dramatic and resulted in the establishment of the UN Convention to Combat Desertification (UNCCD) in 1994. UNCCD's task is to mitigate the negative impacts of desertification in drylands. Since the late 1990s, science has become increasingly critical towards the role of desertification in sustainable land use and food production. Many of the dramatic global assessments of desertification in the 1970s and 1980s were heavily criticized by scientists working in drylands. The used methodologies and the lack of ground-based evidence gave rise to critical reflections on desertification. Some even called desertification a myth. Later desertification assessments relied on remote sensing imagery and mapped vegetation changes in drylands. No examples of large areas completely degraded were found in the scientific literature. In science, desertification is now perceived as a local feature that certainly exists but is not as devastating as was earlier believed. However, the policy arena continues to stress the severity of the problem. Claims that millions of hectares of once productive land are annually lost due to desertification are regularly made. This highlights the disconnection between science and policy, and there is an urgent need for better dialogue in order to achieve SDG 15
    corecore