11 research outputs found

    Nickel incorporation in Fe(II, III) hydroxysulfate Green Rust: effect on crystal lattice spacing and oxidation products Incorporação de níquel em Fe (II-III) Grenn Rust hidroxisulfato: efeito sobre a estrutura cristalina e produtos de oxidação

    No full text
    Ni(II)-Fe(II)-Fe(III) layered double hydroxides (LDH) or Ni-containing sulfate green rust (GR2) samples were prepared from Ni(II), Fe(II) and Fe(III) sulfate salts and analyzed with X ray diffraction. Nickel is readily incorporated in the GR2 structure and forms a solid solution between GR2 and a Ni(II)-Fe(III) LDH. There is a correlation between the unit cell a-value and the fraction of Ni(II) incorporated into the Ni(II)-GR2 structure. Since there is strong evidence that the divalent/trivalent cation ratio in GR2 is fixed at 2, it is possible in principle to determine the extent of divalent cation substitution for Fe(II) in GR2 from the unit cell a-value. Oxidation forms a mixture of minerals but the LDH structure is retained if at least 20 % of the divalent cations in the initial solution are Ni(II). It appears that Ni(II) is incorporated in a stable LDH structure. This may be important for two reasons, first for understanding the formation of LDHs, which are anion exchangers, in the natural environment. Secondly, this is important for understanding the fate of transition metals in the environment, particularly in the presence of reduced Fe compounds.<br>Amostras de hidróxidos de dupla camada (HDC), ou "sulfate green rust" (GR2), contendo Ni foram preparadas utilizando-se sulfatos de Ni(II), Fe(II) e Fe(III) e analisadas por difração de raios X. O Ni está incorporado na estrutura do GR2 e forma um sólido entre GR2 e um HDC contendo Ni(II)-Fe(III). Há correlação entre os valores de "a" da célula unitária e os da fração de Ni(II) incorporado na estrutura do Ni(II)-GR2. Desde que haja forte evidência de que a razão entre os cátions divalente/trivalente no GR2 seja igual a 2, é possível, a princípio, determinar a extensão da substituição do cátion divalente por Fe(II) no GR2 a partir dos valores de "a" da célula unitária do cristal. Sob o efeito da oxidação, é formada uma mistura de minerais, porém a estrutura do HDC não é alterada se pelo menos 20 % dos cátions divalentes na solução inicial forem de Ni(II). Isso parece indicar que o Ni(II) está incorporado à estrutura estável do HDC, o que é importante por duas razões: para entender a formação dos HDC, os quais são trocadores aniônicos em condições naturais no meio ambiente; e para entender o destino dos metais de transição no ambiente, particularmente na presença de compostos de Fe na forma reduzida

    Sediment diffusive fluxes of Fe, Mn, and P in a eutrophic lake: Contribution from lateral vs bottom sediments

    No full text
    Water column data and porewater profiles are used to study the chemical evolution with time and with depth of a eutrophic lake. By using different approaches, diffusion fluxes for dissolved iron, manganese and phosphate are calculated and used to describe the processes occurring at the sediment-water interface as well as in the hypolimnion of the lake. These data are used in the elaboration of a qualitative model to describe the chemical behaviour of the sedimentary interface of an anoxic lake with emphasis on the Fe/P/S system. Acorona model is proposed to explain the evolution with time of the diffusion process by estimating the relative contribution of bottom and lateral sediment surfaces to the total fluxes of dissolved elements diffusing from the sediment to the overlying water. As the hypolimnion becomes more anoxic, it has been observed that lateral sediment surfaces (16 to 10 meters in depth) represents a larger supplier of diffusing dissolved components than the bottom sediment portion (bottom to 18 meters)
    corecore