30,574 research outputs found

    Magnetorotational Turbulence and Dynamo in a Collisionless Plasma

    Full text link
    We present results from the first 3D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model of a collisionless accretion disc. The kinetic magnetorotational instability grows from a subthermal magnetic field having zero net flux over the computational domain to generate self-sustained turbulence and outward angular-momentum transport. Significant Maxwell and Reynolds stresses are accompanied by comparable viscous stresses produced by field-aligned ion pressure anisotropy, which is regulated primarily by the mirror and ion-cyclotron instabilities through particle trapping and pitch-angle scattering. The latter endow the plasma with an effective viscosity that is biased with respect to the magnetic-field direction and spatio-temporally variable. Energy spectra suggest an Alfv\'en-wave cascade at large scales and a kinetic-Alfv\'en-wave cascade at small scales, with strong small-scale density fluctuations and weak non-axisymmetric density waves. Ions undergo non-thermal particle acceleration, their distribution accurately described by a kappa distribution. These results have implications for the properties of low-collisionality accretion flows, such as that near the black hole at the Galactic center.Comment: 6 pages, 6 figures, accepted for publication in Physical Review Letter

    The telomerase essential N-terminal domain promotes DNA synthesis by stabilizing short RNA-DNA hybrids.

    Get PDF
    Telomerase is an enzyme that adds repetitive DNA sequences to the ends of chromosomes and consists of two main subunits: the telomerase reverse transcriptase (TERT) protein and an associated telomerase RNA (TER). The telomerase essential N-terminal (TEN) domain is a conserved region of TERT proposed to mediate DNA substrate interactions. Here, we have employed single molecule telomerase binding assays to investigate the function of the TEN domain. Our results reveal telomeric DNA substrates bound to telomerase exhibit a dynamic equilibrium between two states: a docked conformation and an alternative conformation. The relative stabilities of the docked and alternative states correlate with the number of basepairs that can be formed between the DNA substrate and the RNA template, with more basepairing favoring the docked state. The docked state is further buttressed by the TEN domain and mutations within the TEN domain substantially alter the DNA substrate structural equilibrium. We propose a model in which the TEN domain stabilizes short RNA-DNA duplexes in the active site of the enzyme, promoting the docked state to augment telomerase processivity

    Firehose and Mirror Instabilities in a Collisionless Shearing Plasma

    Full text link
    Hybrid-kinetic numerical simulations of firehose and mirror instabilities in a collisionless plasma are performed in which pressure anisotropy is driven as the magnetic field is changed by a persistent linear shear SS. For a decreasing field, it is found that mostly oblique firehose fluctuations grow at ion Larmor scales and saturate with energies ∼\simS1/2S^{1/2}; the pressure anisotropy is pinned at the stability threshold by particle scattering off microscale fluctuations. In contrast, nonlinear mirror fluctuations are large compared to the ion Larmor scale and grow secularly in time; marginality is maintained by an increasing population of resonant particles trapped in magnetic mirrors. After one shear time, saturated order-unity magnetic mirrors are formed and particles scatter off their sharp edges. Both instabilities drive sub-ion-Larmor--scale fluctuations, which appear to be kinetic-Alfv\'{e}n-wave turbulence. Our results impact theories of momentum and heat transport in astrophysical and space plasmas, in which the stretching of a magnetic field by shear is a generic process.Comment: 5 pages, 8 figures, accepted for publication in Physical Review Letter

    Dependence receptor involvement in subtilisin-induced long-term depression and in long-term potentiation

    Get PDF
    The serine protease subtilisin induces a form of long-term depression (LTD) which is accompanied by a reduced expression of the axo-dendritic guidance molecule Unco-ordinated-5C (Unc-5C). One objective of the present work was to determine whether a loss of Unc-5C function contributed to subtilisin-induced LTD by using Unc-5C antibodies in combination with the pore-forming agents Triton X-100 (0.005%) or streptolysin O in rat hippocampal slices. In addition we have assessed the effect of subtilisin on the related dependence receptor Deleted in Colorectal Cancer (DCC) and used antibodies to this protein for functional studies. Field excitatory postsynaptic potentials (fEPSPs) were analysed in rat hippocampal slices and protein extracts were used for Western blotting. Subtilisin produced a greater loss of DCC than of Unc-5C, but the antibodies had no effect on resting excitability or fEPSPs and did not modify subtilisin-induced LTD. However, antibodies to DCC but not Unc-5C did reduce the amplitude of theta-burst long-term potentiation (LTP). In addition, two inhibitors of endocytosis – dynasore and tat-gluR2(3Y) – were tested and, although the former compound had no effect on neurophysiological responses, tat-gluR2(3Y) did reduce the amplitude of subtilisin-induced LTD without affecting the expression of DCC or Unc-5C but with some loss of PostSynaptic Density Protein-95. The results support the view that the dependence receptor DCC may be involved in LTP and suggest that the endocytotic removal of a membrane protein or proteins may contribute to subtilisin-induced LTD, although it appears that neither Unc-5C nor DCC are involved in this process. (220)

    Pegasus: A New Hybrid-Kinetic Particle-in-Cell Code for Astrophysical Plasma Dynamics

    Full text link
    We describe Pegasus, a new hybrid-kinetic particle-in-cell code tailored for the study of astrophysical plasma dynamics. The code incorporates an energy-conserving particle integrator into a stable, second-order--accurate, three-stage predictor-predictor-corrector integration algorithm. The constrained transport method is used to enforce the divergence-free constraint on the magnetic field. A delta-f scheme is included to facilitate a reduced-noise study of systems in which only small departures from an initial distribution function are anticipated. The effects of rotation and shear are implemented through the shearing-sheet formalism with orbital advection. These algorithms are embedded within an architecture similar to that used in the popular astrophysical magnetohydrodynamics code Athena, one that is modular, well-documented, easy to use, and efficiently parallelized for use on thousands of processors. We present a series of tests in one, two, and three spatial dimensions that demonstrate the fidelity and versatility of the code.Comment: 27 pages, 12 figures, accepted for publication in Journal of Computational Physic
    • …
    corecore