608 research outputs found

    Minimum Particle Size for Cyclone Dust Separator

    Get PDF
    Perkins technology wish to separate small soot particles from exhaust gases, and the question posed to the study group was to determine the feasibility of using a cyclone separator to remove these particles. Soot is mostly composed of polycyclicaromatic compounds and results from the incomplete combustion of the diesel fuel in the engine. The average size of the particles formed in the engine is in the range 3 to 10 nm in diameter, but this is known to increase within the exhaust system. In the first part of this report we determine the minimum particle size that can be removed by centrifugal separation. The second part discusses the mechanisms for particle growth within the exhaust system in order to estimate the particle growth rate. In section two we estimate the minimum particle diameter that can be removed by a cyclone separator is around one micron. This estimate is consistent with current applications of hydrocyclones. The particle size measurements by Perkins Technology together with our estimates from section three, suggest that the soot particles are an order of magnitude smaller than this. Although it may be possible to remove some particles less than one micron in diameter with a well designed high-speed cyclone, we do not think it will be possible to remove a substantial proportion of 100 nm or smaller particles. The growth rate of the particles increases if the particles volume fraction or the polydispersity is increased. Therefore aggregation could be enhanced by the addition of larger particles (d > 1 µm) or water droplets (provided the water does not all vapourise) to the exhaust gas

    Quantum Hall Bilayers and the Chiral Sine-Gordon Equation

    Full text link
    The edge state theory of a class of symmetric double-layer quantum Hall systems with interlayer electron tunneling reduces to the sum of a free field theory and a field theory of a chiral Bose field with a self-interaction of the sine-Gordon form. We argue that the perturbative renormalization group flow of this chiral sine-Gordon theory is distinct from the standard (non-chiral) sine-Gordon theory, contrary to a previous assertion by Renn, and that the theory is manifestly sensible only at a discrete set of values of the inverse period of the cosine interaction (beta). We obtain exact solutions for the spectra and correlation functions of the chiral sine-Gordon theory at the two values of beta at which the electron tunneling in bilayers is not irrelevant. Of these, the marginal case (beta^2=4) is of greatest interest: the spectrum of the interacting theory is that of two Majorana fermions with different, dynamically generated, velocities. For the experimentally observed bilayer 331 state at filling factor 1/2, this implies the trifurcation of electrons added to the edge. We also present a method for fermionizing the theory at the discrete points (integer beta^2) by the introduction of auxiliary degrees of freedom that could prove useful in other problems involving quantum Hall multilayers.Comment: revtex, epsf; 39 p., 4 figs; corrections to three equations; two-up postscript at http://www.sns.ias.edu/~leonid/csg-2up.p

    Dynamics of the Compact, Ferromagnetic \nu=1 Edge

    Full text link
    We consider the edge dynamics of a compact, fully spin polarized state at filling factor ν=1\nu=1. We show that there are two sets of collective excitations localized near the edge: the much studied, gapless, edge magnetoplasmon but also an additional edge spin wave that splits off below the bulk spin wave continuum. We show that both of these excitations can soften at finite wave-vectors as the potential confining the system is softened, thereby leading to edge reconstruction by spin texture or charge density wave formation. We note that a commonly employed model of the edge confining potential is non-generic in that it systematically underestimates the texturing instability.Comment: 13 pages, 7 figures, Revte

    Quantum fluctuations of classical skyrmions in quantum Hall Ferromagnets

    Full text link
    In this article, we discuss the effect of the zero point quantum fluctuations to improve the results of the minimal field theory which has been applied to study %SMG the skyrmions in the quantum Hall systems. Our calculation which is based on the semiclassical treatment of the quantum fluctuations, shows that the one-loop quantum correction provides more accurate results for the minimal field theory.Comment: A few errors are corrected. Accepted for publication in Rapid Communication, Phys. Rev.

    Probing sediment burial age, provenance and geomorphic processes in dryland dunes and lake shorelines using portable luminescence data

    Get PDF
    Luminescence signals from portable optically-stimulated luminescence readers (POSL or port-OSL) can provide expedient insights into sample relative age, and under certain conditions can be simplistically calibrated against existing luminescence chronologies to provide first-order estimates of burial age. This is most straightforward in simple sedimentary systems where samples share a common provenance and geomorphic process history. The spatially extensive southern African dune and palaeolake shoreline luminescence database, for which hundreds of non-light exposed bulk sediments are available, offers a valuable test case to examine the conditions under which POSL-bulk sediment calibration approaches are feasible. To do this we combine measurements of inherent luminescence sensitivity of bulk sediment (BSS) with analysis of sedimentary composition (petrology and presence of calcium carbonate) and texture. We show that BSS, along with POSL IRSL:BSL ratios and petrological data, account for region-to-region variations, whilst internal variability (scatter) within the lake shorelines dataset relates to variations in BSS and sediment texture. At the scale of southern African subcontinent drylands, we see that provenance and geomorphological process history influence sample mineralogical composition and POSL signal characteristic, including BSS

    Interlayer Exchange Interactions, SU(4) Soft Waves and Skyrmions in Bilayer Quantum Hall Ferromagnets

    Full text link
    The Coulomb exchange interaction is the driving force for quantum coherence in quantum Hall systems. We construct a microscopic Landau-site Hamiltonian for the exchange interaction in bilayer quantum Hall ferromagnets, which is characterized by the SU(4) isospin structure. By taking a continuous limit, the Hamiltonian gives rise to the SU(4) nonlinear sigma model in the von-Neumann-lattice formulation. The ground-state energy is evaluated at filling factors ν=1,2,3,4\nu =1,2,3,4. It is shown at ν=1\nu =1 that there are 3 independent soft waves, where only one soft wave is responsible for the coherent tunneling of electrons between the two layers. It is also shown at ν=1\nu =1 that there are 3 independent skyrmion states apart from the translational degree of freedom. They are CP3^{3} skyrmions enjoying the spin-charge entanglement confined within the \LLL.Comment: 12 pages, 2 figure

    Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schr\"odinger system

    Full text link
    We study a nonlinear system of partial differential equations in which a complex field (the Higgs field) evolves according to a nonlinear Schroedinger equation, coupled to an electromagnetic field whose time evolution is determined by a Chern-Simons term in the action. In two space dimensions, the Chern-Simons dynamics is a Galileo invariant evolution for A, which is an interesting alternative to the Lorentz invariant Maxwell evolution, and is finding increasing numbers of applications in two dimensional condensed matter field theory. The system we study, introduced by Manton, is a special case (for constant external magnetic field, and a point interaction) of the effective field theory of Zhang, Hansson and Kivelson arising in studies of the fractional quantum Hall effect. From the mathematical perspective the system is a natural gauge invariant generalization of the nonlinear Schroedinger equation, which is also Galileo invariant and admits a self-dual structure with a resulting large space of topological solitons (the moduli space of self-dual Ginzburg-Landau vortices). We prove a theorem describing the adiabatic approximation of this system by a Hamiltonian system on the moduli space. The approximation holds for values of the Higgs self-coupling constant close to the self-dual (Bogomolny) value of 1. The viability of the approximation scheme depends upon the fact that self-dual vortices form a symplectic submanifold of the phase space (modulo gauge invariance). The theorem provides a rigorous description of slow vortex dynamics in the near self-dual limit.Comment: Minor typos corrected, one reference added and DOI give

    Low-Luminosity Accretion in Black Hole X-ray Binaries and Active Galactic Nuclei

    Full text link
    At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 101210^{12} K near the black hole), the electrons are also hot (10910.5\sim10^{9-10.5} K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.Comment: To appear in "From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales" edited by T. Maccarone, R. Fender, L. Ho, to be published as a special edition of "Astrophysics and Space Science" by Kluwe

    Menus for Feeding Black Holes

    Full text link
    Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.Comment: 27 pages. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    Production and Decay of D_1(2420)^0 and D_2^*(2460)^0

    Get PDF
    We have investigated D+πD^{+}\pi^{-} and D+πD^{*+}\pi^{-} final states and observed the two established L=1L=1 charmed mesons, the D1(2420)0D_1(2420)^0 with mass 242122+1+22421^{+1+2}_{-2-2} MeV/c2^{2} and width 2053+6+320^{+6+3}_{-5-3} MeV/c2^{2} and the D2(2460)0D_2^*(2460)^0 with mass 2465±3±32465 \pm 3 \pm 3 MeV/c2^{2} and width 2876+8+628^{+8+6}_{-7-6} MeV/c2^{2}. Properties of these final states, including their decay angular distributions and spin-parity assignments, have been studied. We identify these two mesons as the jlight=3/2j_{light}=3/2 doublet predicted by HQET. We also obtain constraints on {\footnotesize ΓS/(ΓS+ΓD)\Gamma_S/(\Gamma_S + \Gamma_D)} as a function of the cosine of the relative phase of the two amplitudes in the D1(2420)0D_1(2420)^0 decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by sending mail to: [email protected]
    corecore