34,628 research outputs found

    G conditioning suit Patent

    Get PDF
    Conditioning suit for normal function of astronaut cardiovascular system in gravity environmen

    Solar cycle variations of the anomalous cosmic ray component

    Get PDF
    The intensity of the anomalous cosmic ray component, consisting of He, N, O, and Ne, has long been known to be especially sensitive to the effects of solar modulation. Following its discovery in 1972, this component dominated the quiet time flux of cosmic ray nuclei below approx. 30 MeV/nucleon during the 1972 to 1978 solar minimum, but then became essentially unobservable at 1 AU with the approach of solar maximum conditions. One recent theoretical model predicts substantial differences in the intensity of the anomalous fluxes from one solar minimum period to the next because of the reversal of the solar magnetic field. Using data from the Caltech experiments on IMP-8 and ICE (ISEE-3), the intensity of anomalous O and He at 1 AU during the years 1972 to 1985 is reported in particular. Whether the anomalous fluxes will return to their 1972-1978 levels, as predicted by spherically symmetric modulation models, or whether they will fail to return to 1 AU, as suggested by modulation models in which gradient and curvature drifts dominate are to be determined. The preliminary analysis of data from 1984 shows that the intensity of 8 to 27 MeV/nucleon O is still more than an order of magnitude below its 1972 to 1978 levels, while the intensity of 25 to 43 MeV/nucleon He is a factor of Approx. 8 below its maximum level in 1977

    Reduction and analysis of data from experiment CAI on the IMP-8 mission

    Get PDF
    The Caltech Electron/Isotope Spectrometer (EIS) on the Interplanetary Monitoring Platform 8 (IMP-8) has provided precise measurements of the energy spectra and time variations of low energy electrons (0.16 to 6 MeV), the isotopes of hydrogen and helium (approximately 2 to 40 MeV/nucleon), and the elements from lithium through oxygen (approximately 5 to 50 MeV/nucleon) in energetic particle fluxes of solar, galactic, interplanetary, and magnetospheric origin since 1973. The accomplishments that have resulted from EIS measurements during the period March 24, 1980 to December 31, 1984 are summarized

    Research in particles and fields

    Get PDF
    Cosmic rays and astrophysical plasmas, NASA spacecraft experiment activities, and gamma rays are discussed

    Propagation of a Topological Transition: the Rayleigh Instability

    Full text link
    The Rayleigh capillary instability of a cylindrical interface between two immiscible fluids is one of the most fundamental in fluid dynamics. As Plateau observed from energetic considerations and Rayleigh clarified through hydrodynamics, such an interface is linearly unstable to fission due to surface tension. In traditional descriptions of this instability it occurs everywhere along the cylinder at once, triggered by infinitesimal perturbations. Here we explore in detail a recently conjectured alternate scenario for this instability: front propagation. Using boundary integral techniques for Stokes flow, we provide numerical evidence that the viscous Rayleigh instability can indeed spread behind a front moving at constant velocity, in some cases leading to a periodic sequence of pinching events. These basic results are in quantitative agreement with the marginal stability criterion, yet there are important qualitative differences associated with the discontinuous nature of droplet fission. A number of experiments immediately suggest themselves in light of these results.Comment: 15 pages, 7 figures, Te

    Research in particles and fields

    Get PDF
    The astrophysical aspects of cosmic and gamma rays and the radiation environment of the Earth and other planets investigated by means of energetic particle detector systems flown on spacecraft and balloons are discussed. The theory of particles and fields in space is also addressed with particular emphasis on models of Saturn's magnetic field

    The mixing of interplanetary magnetic field lines: A significant transport effect in studies of the energy spectra of impulsive flares

    Get PDF
    Using instrumentation on board the ACE spacecraft we describe short-time scale (~3 hour) variations observed in the arrival profiles of ~20 keV nucleon^(–1) to ~2 MeV nucleon^(–1) ions from impulsive solar flares. These variations occurred simultaneously across all energies and were generally not in coincidence with any local magnetic field or plasma signature. These features appear to be caused by the convection of magnetic flux tubes past the observer that are alternately filled and devoid of flare ions even though they had a common flare source at the Sun. In these particle events we therefore have a means to observe and measure the mixing of the interplanetary magnetic field due to random walk. In a survey of 25 impulsive flares observed at ACE between 1997 November and 1999 July these features had an average time scale of 3.2 hours, corresponding to a length of ~0.03 AU. The changing magnetic connection to the flare site sometimes lead to an incomplete observation of a flare at 1 AU; thus the field-line mixing is an important effect in studies of impulsive flare energy spectra

    An Improved Prediction Method for Noise Generated by Conventional Profile Coaxial Jets

    Get PDF
    A semiempirical model for predicting the noise generated by conventional velocity profile jets exhausting from coaxial nozzles is presented and compared with small scale static and simulated flight data. Improvements to the basic circular jet noise prediction are developed which improve the accuracy, especially at high jet velocity and near the jet axis

    The new bank capital adequacy standards

    Get PDF
    Bank capital ; Banks and banking

    Research in particles and fields

    Get PDF
    The astrophysical aspects of cosmic radiation and the radiation and electromagnetic field environment of the Earth and other planets are investigated. Energetic particle and photon detector systems flown on spacecraft and balloons are used. Galactic, solar, interplanetary, and planetary energetic particles and plasmas are also studied with emphasis on precision measurements with high resolution in charge, mass, and energy
    • …
    corecore