256 research outputs found

    Quantum phase transitions from topology in momentum space

    Full text link
    Many quantum condensed matter systems are strongly correlated and strongly interacting fermionic systems, which cannot be treated perturbatively. However, physics which emerges in the low-energy corner does not depend on the complicated details of the system and is relatively simple. It is determined by the nodes in the fermionic spectrum, which are protected by topology in momentum space (in some cases, in combination with the vacuum symmetry). Close to the nodes the behavior of the system becomes universal; and the universality classes are determined by the toplogical invariants in momentum space. When one changes the parameters of the system, the transitions are expected to occur between the vacua with the same symmetry but which belong to different universality classes. Different types of quantum phase transitions governed by topology in momentum space are discussed in this Chapter. They involve Fermi surfaces, Fermi points, Fermi lines, and also the topological transitions between the fully gapped states. The consideration based on the momentum space topology of the Green's function is general and is applicable to the vacua of relativistic quantum fields. This is illustrated by the possible quantum phase transition governed by topology of nodes in the spectrum of elementary particles of Standard Model.Comment: 45 pages, 17 figures, 83 references, Chapter for the book "Quantum Simulations via Analogues: From Phase Transitions to Black Holes", to appear in Springer lecture notes in physics (LNP

    Wavefunction topology of two-dimensional time-reversal symmetric superconductors

    Full text link
    We discuss the topology of the wavefunctions of two-dimensional time-reversal symmetric superconductors. We consider (a) the planar state, (b) a system with broken up-down reflection symmetry, and (c) a system with general spin-orbit interaction. We show explicitly how the relative sign of the order parameter on the two Fermi surfaces affects this topology, and clarify the meaning of the Z2Z_2 classification for these topological states.Comment: only the Introduction has been modified from v

    Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition

    Get PDF
    Cylindrical algebraic decomposition(CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. When using CAD, there is often a choice for the ordering placed on the variables. This can be important, with some problems infeasible with one variable ordering but easy with another. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we use machine learning (specifically a support vector machine) to select between heuristics for choosing a variable ordering, outperforming each of the separate heuristics.Comment: 16 page

    Iordanskii Force and the Gravitational Aharonov-Bohm effect for a Moving Vortex

    Full text link
    I discuss the scattering of phonons by a vortex moving with respect to a superfluid condensate. This allows us to test the compatibility of the scattering-theory derivation of the Iordanskii force with the galilean invariance of the underlying fluid dynamics. In order to obtain the correct result we must retain O(vs2)O(v_s^2) terms in the sound-wave equation, and this reinforces the interpretation, due to Volovik, of the Iordanskii force as an analogue of the gravitational Bohm-Aharonov effect.Comment: 20 pages, LaTe

    Spectrum of the Vortex Bound States of the Dirac and Schrodinger Hamiltonian in the presence of Superconducting Gaps

    Full text link
    We investigate the vortex bound states both Schrodinger and Dirac Hamiltonian with the s-wave superconducting pairing gap by solving the mean-field Bogoliubov-de-Gennes equations. The exact vortex bound states spectrum is numerically determined by the integration method, and also accompanied by the quasi-classical analysis. It is found that the bound state energies is proportional to the vortex angular momentum when the chemical potential is large enough. By applying the external magnetic field, the vortex bound state energies of the Dirac Hamiltonian are almost unchanged; whereas the energy shift of the Schrodinger Hamiltonian is proportional to the magnetic field. These qualitative differences may serve as an indirect evidence of the existence of Majorana fermions in which the zero mode exists in the case of the Dirac Hamiltonian only.Comment: 8 pages, 9 figure

    On Slow Light as a Black Hole Analogue

    Get PDF
    Although slow light (electromagnetically induced transparency) would seem an ideal medium in which to institute a ``dumb hole'' (black hole analog), it suffers from a number of problems. We show that the high phase velocity in the slow light regime ensures that the system cannot be used as an analog displaying Hawking radiation. Even though an appropriately designed slow-light set-up may simulate classical features of black holes -- such as horizon, mode mixing, Bogoliubov coefficients, etc. -- it does not reproduce the related quantum effects. PACS: 04.70.Dy, 04.80.-y, 42.50.Gy, 04.60.-m.Comment: 14 pages RevTeX, 5 figure

    Gravity wave analogs of black holes

    Full text link
    It is demonstrated that gravity waves of a flowing fluid in a shallow basin can be used to simulate phenomena around black holes in the laboratory. Since the speed of the gravity waves as well as their high-wavenumber dispersion (subluminal vs. superluminal) can be adjusted easily by varying the height of the fluid (and its surface tension) this scenario has certain advantages over the sonic and dielectric black hole analogs, for example, although its use in testing quantum effects is dubious. It can be used to investigate the various classical instabilities associated with black (and white) holes experimentally, including positive and negative norm mode mixing at horizons. PACS: 04.70.-s, 47.90.+a, 92.60.Dj, 04.80.-y.Comment: 14 pages RevTeX, 5 figures, section VI modifie

    The Basics of Water Waves Theory for Analogue Gravity

    Full text link
    This chapter gives an introduction to the connection between the physics of water waves and analogue gravity. Only a basic knowledge of fluid mechanics is assumed as a prerequisite.Comment: 36 pages. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 201

    Interplanetary and Geomagnetic Consequences of Interacting CMEs of 13-14 June 2012

    Full text link
    We report on the kinematics of two interacting CMEs observed on 13 and 14 June 2012. Both CMEs originated from the same active region NOAA 11504. After their launches which were separated by several hours, they were observed to interact at a distance of 100 Rs from the Sun. The interaction led to a moderate geomagnetic storm at the Earth with Dst index of approximately, -86 nT. The kinematics of the two CMEs is estimated using data from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) onboard the Solar Terrestrial Relations Observatory (STEREO). Assuming a head-on collision scenario, we find that the collision is inelastic in nature. Further, the signatures of their interaction are examined using the in situ observations obtained by Wind and the Advance Composition Explorer (ACE) spacecraft. It is also found that this interaction event led to the strongest sudden storm commencement (SSC) (approximately 150 nT) of the present Solar Cycle 24. The SSC was of long duration, approximately 20 hours. The role of interacting CMEs in enhancing the geoeffectiveness is examined.Comment: 17 pages, 5 figures, Accepted in Solar Physics Journa

    Free flux flow resistivity in strongly overdoped high-T_c cuprate; purely viscous motion of the vortices in semiclassical d-wave superconductor

    Full text link
    We report the free flux flow (FFF) resistivity associated with a purely viscous motion of the vortices in moderately clean d-wave superconductor Bi:2201 in the strongly overdoped regime (T_c=16K) for a wide range of the magnetic field in the vortex state. The FFF resistivity is obtained by measuring the microwave surface impedance at different microwave frequencies. It is found that the FFF resistivity is remarkably different from that of conventional s-wave superconductors. At low fields (H<0.2H_c2) the FFF resistivity increases linearly with H with a coefficient which is far larger than that found in conventional s-wave superconductors. At higher fields, the FFF resistivity increases in proportion to \sqrt H up to H_c2. Based on these results, the energy dissipation mechanism associated with the viscous vortex motion in "semiclassical" d-wave superconductors with gap nodes is discussed. Two possible scenarios are put forth for these field dependence; the enhancement of the quasiparticle relaxation rate and the reduction of the number of the quasiparticles participating the energy dissipation in d-wave vortex state.Comment: 9 pages 7 figures, to appear in Phys. Rev.
    • …
    corecore