1,492 research outputs found

    Nonlinear Transport in a Quantum Point Contact due to Soft Disorder Induced Coherent Mode Mixing

    Full text link
    We show that the coherent mixing of different transverse modes, due to forward scattering of carriers by soft impurity- or boundary potentials leads to a nonlinear, asymmetric current response of quantum point contacts (QPC). The oscillating contribution to the current is sensitive both to driving voltage and to gate voltage in direct analogy to the electrostatic Aharonov-Bohm effect. Our calculations are in a good agreement with recent experimental data showing small-scale conductivity nonlinearities and asymmetry in QPC.Comment: 4 pages, 2 figures (availiable upon request), REVTEX, Applied Physics Report 93-4

    Quantum fluctuations of classical skyrmions in quantum Hall Ferromagnets

    Full text link
    In this article, we discuss the effect of the zero point quantum fluctuations to improve the results of the minimal field theory which has been applied to study %SMG the skyrmions in the quantum Hall systems. Our calculation which is based on the semiclassical treatment of the quantum fluctuations, shows that the one-loop quantum correction provides more accurate results for the minimal field theory.Comment: A few errors are corrected. Accepted for publication in Rapid Communication, Phys. Rev.

    Distribution of Wigner delay time from single channel disordered systems

    Get PDF
    We consider the scattering of an electron from a semi-infinite one-dimensional random medium. The random medium is characterized by force, -\d V/\d L being the basic random variable. We obtain an analytical expression for the stationary delay time (τ\tau) distribution Ps(τ)P_s(\tau) within a random phase approximation. Our result agrees with earlier analytical expressions, where the random potential is taken to be of different kind, indicating universality of the delay time distribution, i.e., delay time distribution is independent of the nature of disorder.Comment: 8 pages RevTeX, no figure

    Dynamics of the Compact, Ferromagnetic \nu=1 Edge

    Full text link
    We consider the edge dynamics of a compact, fully spin polarized state at filling factor ν=1\nu=1. We show that there are two sets of collective excitations localized near the edge: the much studied, gapless, edge magnetoplasmon but also an additional edge spin wave that splits off below the bulk spin wave continuum. We show that both of these excitations can soften at finite wave-vectors as the potential confining the system is softened, thereby leading to edge reconstruction by spin texture or charge density wave formation. We note that a commonly employed model of the edge confining potential is non-generic in that it systematically underestimates the texturing instability.Comment: 13 pages, 7 figures, Revte

    Statistical properties of phases and delay times of the one-dimensional Anderson model with one open channel

    Full text link
    We study the distribution of phases and of Wigner delay times for a one-dimensional Anderson model with one open channel. Our approach, based on classical Hamiltonian maps, allows us an analytical treatment. We find that the distribution of phases depends drastically on the parameter σA=σ/sink\sigma_A = \sigma/sin k where σ2\sigma^2 is the variance of the disorder distribution and kk the wavevector. It undergoes a transition from uniformity to singular behaviour as σA\sigma_A increases. The distribution of delay times shows universal power law tails  1/τ2~ 1/\tau^2, while the short time behaviour is σA\sigma_A- dependent.Comment: 4 pages, 2 figures, Submitted to PR

    Magnetic fields in cosmic particle acceleration sources

    Full text link
    We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. We discuss a number of CR-driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review

    Abelian Magnetic Monopole Dominance in Quark Confinement

    Get PDF
    We prove Abelian magnetic monopole dominance in the string tension of QCD. Abelian and monopole dominance in low energy physics of QCD has been confirmed for various quantities by recent Monte Carlo simulations of lattice gauge theory. In order to prove this dominance, we use the reformulation of continuum Yang-Mills theory in the maximal Abelian gauge as a deformation of a topological field theory of magnetic monopoles, which was proposed in the previous article by the author. This reformulation provides an efficient way for incorporating the magnetic monopole configuration as a topological non-trivial configuration in the functional integral. We derive a version of the non-Abelian Stokes theorem and use it to estimate the expectation value of the Wilson loop. This clearly exhibits the role played by the magnetic monopole as an origin of the Berry phase in the calculation of the Wilson loop in the manifestly gauge invariant manner. We show that the string tension derived from the diagonal (abelian) Wilson loop in the topological field theory (studied in the previous article) converges to that of the full non-Abelian Wilson loop in the limit of large Wilson loop. Therefore, within the above reformulation of QCD, this result (together with the previous result) completes the proof of quark confinement in QCD based on the criterion of the area law of the full non-Abelian Wilson loop.Comment: 33 pages, Latex, no figures, version accepted for publication in Phys. Rev. D (additions of sec. 4.5 and references, and minor changes

    Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots

    Full text link
    We show that the parametric correlations of the conductance peak amplitudes of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime become universal upon an appropriate scaling of the parameter. We compute the universal forms of this correlator for both cases of conserved and broken time reversal symmetry. For a symmetric dot the correlator is independent of the details in each lead such as the number of channels and their correlation. We derive a new scaling, which we call the rotation scaling, that can be computed directly from the dot's eigenfunction rotation rate or alternatively from the conductance peak heights, and therefore does not require knowledge of the spectrum of the dot. The relation of the rotation scaling to the level velocity scaling is discussed. The exact analytic form of the conductance peak correlator is derived at short distances. We also calculate the universal distributions of the average level width velocity for various values of the scaled parameter. The universality is illustrated in an Anderson model of a disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure

    Aspects of Magnetic Field Configurations in Planar Nonlinear Electrodynamics

    Full text link
    In the framework of three-dimensional Born-Infeld Electrodynamics, we pursue an investigation of the consequences of the space-time dimensionality on the existence of magnetostatic fields generated by electric charges at rest in an inertial frame, which are present in its four-dimensional version. Our analysis reveals interesting features of the model. In fact, a magnetostatic field associated with an electric charge at rest does not appear in this case. Interestingly, the addition of the topological term (Chern-Simons) to Born-Infeld Electrodynamics yields the appearance of the magnetostatic field. We also contemplate the fields associated to the would-be-magnetic monopole in three dimensions.Comment: 8 page

    Comparison of Radiation Damage in Lead Tungstate Crystals under Pion and Gamma Irradiation

    Full text link
    Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40-GeV pion beam. After full recovery, the same crystals were irradiated using a 137Cs^{137}Cs γ\gamma-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.Comment: 10 pages, 8 figures, Latex 2e, 28.04.04 - minor grammatical change
    corecore