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Abstract

We consider the scattering of an electron from a semi-infinite one-

dimensional random medium. The random medium is characterized by force,

−∂V/∂L being the basic random variable. We obtain an analytical expression

for the stationary delay time (τ) distribution Ps(τ) within a random phase

approximation. Our result agrees with earlier analytical expressions, where

the random potential is taken to be of different kind, indicating universality

of the delay time distribution, i.e., delay time distribution is independent of

the nature of disorder.
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In recent years universal parametric correlations of phase shifts and delay times in meso-

scopic systems is being studied intensively [1]. The time delay in a scattering event (or

duration of a collision event) is an interesting aspect in itself in the general theory of quan-

tum scattering. Wigner was the first to establish the relation between the time delay and

the energy derivative of scattering phase shift [2]. Distribution of delay times in quantum

chaotic regime have been shown to be universal as it depends only on the symmetry prop-

erty of the Hamiltonian or scattering matrix [1,3]. The delay time statistics is intimately

connected with the issue of dynamic admittance of microstructres (or mesoscopic systems)

[3,4], for example quantum capacitance and its fluctuation [5]. The wave packet incident on

the surface a sample is not backscattered (or reflected) immediately. There will be some time

delay before it is reflected. This leads to a non-cancellation of the instantaneous currents at

the surface involving the incident and the reflected wave. This in-turn is expected to lead to

a low temperature 1/f -type noise for the fluctuating surface currents in the random systems

[6–8]. The study of change of density of states due to scatterer is also directly related to the

phase derivative of scattering phase shift with respect to the energy, i.e., to the delay time.

The distribution of delay time and its correlations in higher dimensions, where system

exhibits the Anderson localization has not been addressed so far. The first study of the

stationary distribution Ps(τ) of delay time τ for a disordered semi-infinite one-dimensional

chain was carried out in reference [7]. Here authors used the invariant imbedding approach.

The underlying random potential V (x) is treated as a Gaussian white noise with zero mean.

Using the random phase approximation (RPA) analytical expression for the Ps(τ) was ob-

tained, which exhibits 1/τ 2 dependence for the tail of the delay distribution. Further de-

velopments for Ps(τ) using supersymmetric potentials lead to same distribution function

Ps(τ) within RPA. This has lead to a conjecture that within RPA, Ps(τ) is independent

of nature of disorder and, hence, is universal [9]. Our recent numerical study has clearly

indicated that long time delay distribution is universal beyond RPA [10]. In our present

work we calculate the distribution of delay time where we take −∂V/∂x as the basic random

variable with delta correlated Gaussian distribution and we obtain analytical expression for
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Ps(τ) in RPA. The stationary distribution has the same functional form obtained earlier

with different random potential indicating the universal nature of Ps(τ).

The model Hamiltonian for the 1-D disordered system is

H =
−h̄2

2m

∂2

∂x2
+ V (x) (1)

where V (x) for 0 < x < L is the random potential. The disordered sample extends from

x = 0 to X = L, the two ends being connected to perfect leads. Consider an electron of wave

number k incident at x = L from right. It is partially reflected with the complex reflection

coefficient R(L) and partially transmitted. The transmission and reflection coefficients are

emergent quantities of direct physical interest for the conductance problem. The method

of invariant imbedding was proposed originally by S. Chandrashekhar in the context of

radiative transfer through stellar atmosphere [11]. His method consists of viewing the given

sample of length L as imbedded in a larger sample of length L + ∆L and then setting up

an equation for the resulting change in the S-matrix ∆S as ∆L → 0. In order to look for

the complex reflection coefficient, we transform Eqn. 1 to the invariant imbedding equation

for the complex reflection amplitude R(L) = |R(L)|Exp(iθ(L)). The evolution equation for

R(L) is now given by [12]

∂R(L)

∂L
= f1(L) + 2if0(L)R(L) − f1(L)R2(L), (2)

with

f1(L) =
2

k(L)

∂k

∂L
,

f0(L) = k(L)

and

k2 =
2m

h̄2
(E − V (L)) .

The above equation Eqn. 2 was first studied in Ref. [13] to evaluate the resistance and

its fluctuation in a disordered quantum wire. The invariant imbedding method has been

generalized to N-channel case and in an equivalent random phase approximation has lead
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to DMPK (Dorokhov-Mello-Pereyra-Kumar) equation [14], using which coherent transport

properties have been analyzed extensively in mesoscopic systems.

In the present problem we consider random potential V (L) to be bounded having a small

amplitude. However, −∂V/∂L can be unbounded and we treat ξ(L) = −∂V/∂L as our basic

random variable. The energy of incident electron is assumed to be large, i.e., much larger

than the magnitude of the upper bound on the potential. In that case we have

f1(L) =
−1

E

∂V (L)

∂L
and f0(L) =

√

2m

h̄2

√
E (3)

We take ξ(L) to be Gaussian delta correlated random number with zero mean and

〈ξ(L)ξ(L′)〉 = 2α δ(L − L′). (4)

Here, the < .... > denotes the ensemble average with respect to the realizations of the

stochastic variable ξ and α denotes the strength of the disorder. The equation for the phase

(θ) is readily obtained from Eqn. 2 as

∂θ

∂L
= 2

√

2m

h̄2

√
E − 2

ξ(L)

E
sin(θ) (5)

where we have set |R| = 1 since we will be interested in the limit L → ∞ (semi-

infinite medium), i.e., total back-reflection with probability one. The delay time is given by

τ = h̄∂θ/∂E. Differentiation of Eqn. 5 with respect to E leads to the following equation for

the evolution of τ :

∂τ

∂L
=

√
2m√
E

+
2h̄

E2
ξ(L)sin(θ) − 2

E
ξ(L)cos(θ)τ (6)

From Eqns. 5 and 6 one can obtain readily obtain the equation governing the evolution of

the joint probability distribution W (τ, θ; L) for θ and τ by using the Van Kampen lemma [15]

and Novikov’s theorem [16–18]. In our case, however, we are interested only in the marginal

probability distribution P (τ ; L) =
∫

2π
0

W (τ, θ; L)dθ of delay time τ . The delay time being

the derivative of phase we expect it to fluctuate much more rapidly as compared to the

phase itself. We therefore make the decoupling approximation, as done in earlier literature
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by [7,8], treating θ and τ as statistically independent variables in the large length (L) limit.

As mentioned earlier, we are interested in the case of high energy particles (E ≫ V ) and

in this limit the distribution of θ becomes uniform [19–21], i.e., P (θ) = 1/2π. This is

generally referred to as random phase approximation (RPA). Within the above mentioned

approximations after a straight forward algebra the evolution equation for P (τ ; L) becomes

∂P

∂L
= h̄

∂

∂τ

{

2αh̄

E4

∂P

∂τ
−

√
2m√
E

P +
4α

h̄E2
τP +

2α

h̄E2
τ 2

∂P

∂τ

}

(7)

The stationary distribution Ps(τ) for τ in the limit L → ∞ can be obtained by setting

∂P/∂L = 0. We get the following expression for normalized Ps(τ)

Ps(τ) =
λeλtan−1τ

(eλπ/2 − 1)(1 + τ 2)
(8)

In the above expression we have redefined τ in a dimensionless form τ ≡ τE/h̄ and

λ =
√

2mE E2/(2αh̄). The most probable value of τ occurs at τ = λ/2. As τ → ∞,

Ps(τ) → 1/τ 2, i.e., the distribution has a long time tail which goes as 1/τ 2. This leads

to the logarithmic divergence of the average value of τ indicating that the origin of such

a tail is due, presumably, to the Azbel resonances [22] which make Landauer’s four probe

conductance infinite even for a finite sample. In case of these resonant realizations,the

time spent by the particle inside the medium is large as it travels a large distance before

getting reflected. It is now well established that coherent interference effects, due to elastic

scattering by the serial static disorder lead to localization of eigenstates for arbitrary weak

disorder. The localization length l of these eigenstates is a self averaging quantity [23] and

in a one-dimensional system it is directly proportional to elastic mean free path. The most

probable value τmax of τ is proportional to a time taken by a particle to traverse a distance

of the order of localization length l, τmax ∝ 2l/(h̄k/m), where k is the incident energy. From

this one can readily obtain the behavior of localization length on the material parameters,

namely, l ∝ E2/α.

Our above analytical expression has the same functional form as obtained earlier where

potential itself is treated as a Gaussian random variable using a different invariant imbedding
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equation. From this we conclude that two different models of random variable lead to the

same universal distribution of the delay time. Thus reinforcing the conjecture of universal

behavior of the delay time distribution, independent of nature of disorder within RPA.
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