930 research outputs found

    Join-Idle-Queue with Service Elasticity: Large-Scale Asymptotics of a Non-monotone System

    Get PDF
    We consider the model of a token-based joint auto-scaling and load balancing strategy, proposed in a recent paper by Mukherjee, Dhara, Borst, and van Leeuwaarden (SIGMETRICS '17, arXiv:1703.08373), which offers an efficient scalable implementation and yet achieves asymptotically optimal steady-state delay performance and energy consumption as the number of servers NN\to\infty. In the above work, the asymptotic results are obtained under the assumption that the queues have fixed-size finite buffers, and therefore the fundamental question of stability of the proposed scheme with infinite buffers was left open. In this paper, we address this fundamental stability question. The system stability under the usual subcritical load assumption is not automatic. Moreover, the stability may not even hold for all NN. The key challenge stems from the fact that the process lacks monotonicity, which has been the powerful primary tool for establishing stability in load balancing models. We develop a novel method to prove that the subcritically loaded system is stable for large enough NN, and establish convergence of steady-state distributions to the optimal one, as NN \to \infty. The method goes beyond the state of the art techniques -- it uses an induction-based idea and a "weak monotonicity" property of the model; this technique is of independent interest and may have broader applicability.Comment: 30 page

    Multiclass multiserver queueing system in the Halfin-Whitt heavy traffic regime. Asymptotics of the stationary distribution

    Get PDF
    We consider a heterogeneous queueing system consisting of one large pool of O(r)O(r) identical servers, where rr\to\infty is the scaling parameter. The arriving customers belong to one of several classes which determines the service times in the distributional sense. The system is heavily loaded in the Halfin-Whitt sense, namely the nominal utilization is 1a/r1-a/\sqrt{r} where a>0a>0 is the spare capacity parameter. Our goal is to obtain bounds on the steady state performance metrics such as the number of customers waiting in the queue Qr()Q^r(\infty). While there is a rich literature on deriving process level (transient) scaling limits for such systems, the results for steady state are primarily limited to the single class case. This paper is the first one to address the case of heterogeneity in the steady state regime. Moreover, our results hold for any service policy which does not admit server idling when there are customers waiting in the queue. We assume that the interarrival and service times have exponential distribution, and that customers of each class may abandon while waiting in the queue at a certain rate (which may be zero). We obtain upper bounds of the form O(r)O(\sqrt{r}) on both Qr()Q^r(\infty) and the number of idle servers. The bounds are uniform w.r.t. parameter rr and the service policy. In particular, we show that lim suprEexp(θr1/2Qr())<\limsup_r E \exp(\theta r^{-1/2}Q^r(\infty))<\infty. Therefore, the sequence r1/2Qr()r^{-1/2}Q^r(\infty) is tight and has a uniform exponential tail bound. We further consider the system with strictly positive abandonment rates, and show that in this case every weak limit Q^()\hat{Q}(\infty) of r1/2Qr()r^{-1/2}Q^r(\infty) has a sub-Gaussian tail. Namely E[exp(θ(Q^())2)]0E[\exp(\theta (\hat{Q}(\infty))^2)]0.Comment: 21 page

    Stability conditions for a discrete-time decentralised medium access algorithm

    Full text link
    We consider a stochastic queueing system modelling the behaviour of a wireless network with nodes employing a discrete-time version of the standard decentralised medium access algorithm. The system is {\em unsaturated} -- each node receives an exogenous flow of packets at the rate λ\lambda packets per time slot. Each packet takes one slot to transmit, but neighboring nodes cannot transmit simultaneously. The algorithm we study is {\em standard} in that: a node with empty queue does {\em not} compete for medium access; the access procedure by a node does {\em not} depend on its queue length, as long as it is non-zero. Two system topologies are considered, with nodes arranged in a circle and in a line. We prove that, for either topology, the system is stochastically stable under condition λ<2/5\lambda < 2/5. This result is intuitive for the circle topology as the throughput each node receives in a saturated system (with infinite queues) is equal to the so called {\em parking constant}, which is larger than 2/52/5. (The latter fact, however, does not help to prove our result.) The result is not intuitive at all for the line topology as in a saturated system some nodes receive a throughput lower than 2/52/5.Comment: 22 page
    corecore