651 research outputs found

    Cosmic Strings Stabilized by Fermion Fluctuations

    Full text link
    We provide a thorough exposition of recent results on the quantum stabilization of cosmic strings. Stabilization occurs through the coupling to a heavy fermion doublet in a reduced version of the standard model. The study combines the vacuum polarization energy of fermion zero-point fluctuations and the binding energy of occupied energy levels, which are of the same order in a semi-classical expansion. Populating these bound states assigns a charge to the string. Strings carrying fermion charge become stable if the Higgs and gauge fields are coupled to a fermion that is less than twice as heavy as the top quark. The vacuum remains stable in the model, because neutral strings are not energetically favored. These findings suggest that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model.Comment: Based on talk by HW at QFEXT 11 (Benasque, Spain), 15p, uses ws-ijmpcs.cls (incl

    Fermionic Zero Modes on Domain Walls

    Get PDF
    We study fermionic zero modes in the domain wall background. The fermions have Dirac and left- and right-handed Majorana mass terms. The source of the Dirac mass term is the coupling to a scalar field Φ\Phi. The source of the Majorana mass terms could also be the coupling to a scalar field Φ\Phi or a vacuum expectation value of some other field acquired in a phase transition well above the phase transition of the field Φ\Phi. We derive the fermionic equations of motion and find the necessary and sufficient conditions for a zero mode to exist. We also find the solutions numerically. In the absence of the Majorana mass terms, the equations are solvable analytically. In the case of massless fermions a zero energy solution exists and we show that although this mode is not discretely normalizable it is Dirac delta function normalizable and should be viewed as part of a continuum spectrum rather than as an isolated zero mode.Comment: 6 pages, 3 figures, matches version published in PR

    Vanishing Dimensions and Planar Events at the LHC

    Full text link
    We propose that the effective dimensionality of the space we live in depends on the length scale we are probing. As the length scale increases, new dimensions open up. At short scales the space is lower dimensional; at the intermediate scales the space is three-dimensional; and at large scales, the space is effectively higher dimensional. This setup allows for some fundamental problems in cosmology, gravity, and particle physics to be attacked from a new perspective. The proposed framework, among the other things, offers a new approach to the cosmological constant problem and results in striking collider phenomenology and may explain elongated jets observed in cosmic-ray data.Comment: v1: 5 pages revtex, 1 eps figure; v2: includes extensive discussion on violation of Lorentz invariance, featured in a Nature editorial [Nature 466 (2010) 426] http://www.nature.com/news/2010/100720/full/466426a.html; v3: discussion expanded, matching journal versio

    Non-topological solitons in brane world models

    Full text link
    We examine some general properties of a certain class of scalar filed theory models containing non-topological soliton solutions in the context of brane world models with compact large extra dimensions. If a scalar field is allowed to propagate in extra space, then, beside standard Kaluza-Klein type excitations, a whole new class of very massive soliton-type states can exist. Depending on their abundance, they can be important dark matter candidates or give significant contribution to entropy and energy density in our universe. .Comment: version accepted for publication in Physical Review

    Using quasars as standard clocks for measuring cosmological redshift

    Full text link
    We report hitherto unnoticed patterns in quasar light curves. We characterize segments of quasars' light curves with the slopes of the straight lines fit through them. These slopes appear to be directly related to the quasars' redshifts. Alternatively, using only global shifts in time and flux, we are able to find significant overlaps between the light curves of different pairs of quasars by fitting the ratio of their redshifts. We are then able to reliably determine the redshift of one quasar from another. This implies that one can use quasars as standard clocks, as we explicitly demonstrate by constructing two independent methods of finding the redshift of a quasar from its light curve.Comment: References added, Published in Phys. Rev. Let

    Holes in the walls: primordial black holes as a solution to the cosmological domain wall problem

    Full text link
    We propose a scenario in which the cosmological domain wall and monopole problems are solved without any fine tuning of the initial conditions or parameters in the Lagrangian of an underlying filed theory. In this scenario domain walls sweep out (unwind) the monopoles from the early universe, then the fast primordial black holes perforate the domain walls, change their topology and destroy them. We find further that the (old vacuum) energy density released from the domain walls could alleviate but not solve the cosmological flatness problem.Comment: References added; Published in Phys. Rev.
    • …
    corecore