36 research outputs found

    Phase Heterogeneity in Cholesterol-Containing Ternary Phospholipid Lamellar Phases

    Get PDF
    Pseudo-ternary mixtures of lamellar phase phospholipids (DPPC and brain sphingomyelin with cholesterol) were studied below T m while comparing the influence of cholesterol content, temperature, and the presence of small quantities of vitamin D binding protein (DBP) or vitamin D receptor (VDR). The measurements, conducted by X-ray diffraction (XRD) and nuclear magnetic resonance (NMR), cover a range of cholesterol concentrations (20% mol. wt to 40% mol. wt.) and physiologically relevant temperature range (294-314 K). In addition to rich intraphase behavior, data and modeling are used to approximate the lipids' headgroup location variations under the abovementioned experimental conditions

    From screen to structure with a harvestable microfluidic device

    Get PDF
    Microfluidic crystallization using the Crystal Former improves the identification of initial crystallization conditions relative to screening via vapour diffusion

    Biochemical and structural characterization of a novel arginine kinase from the spider <i>Polybetes pythagoricus</i>

    Get PDF
    Energy buffering systems are key for homeostasis during variations in energy supply. Spiders are the most important predators for insects and therefore key in terrestrial ecosystems. From biomedical interest, spiders are important for their venoms and as a source of potent allergens, such as arginine kinase (AK, EC 2.7.3.3). AK is an enzyme crucial for energy metabolism, keeping the pool of phosphagens in invertebrates, and also an allergen for humans. In this work, we studied AK from the Argentininan spider Polybetes pythagoricus (PpAK), from its complementary DNA to the crystal structure. The PpAK cDNA from muscle was cloned, and it is comprised of 1068 nucleotides that encode a 384-amino acids protein, similar to other invertebrate AKs. The apparent Michaelis-Menten kinetic constant (Km) was 1.7 mM with a kcat of 75 s-1. Two crystal structures are presented, the apoPvAK and PpAK bound to arginine, both in the open conformation with the active site lid (residues 310-320) completely disordered. The guanidino group binding site in the apo structure appears to be organized to accept the arginine substrate. Finally, these results contribute to knowledge of mechanistic details of the function of arginine kinase.Instituto de Investigaciones Bioquímicas de La Plat

    Biochemical and structural characterization of a novel arginine kinase from the spider <i>Polybetes pythagoricus</i>

    Get PDF
    Energy buffering systems are key for homeostasis during variations in energy supply. Spiders are the most important predators for insects and therefore key in terrestrial ecosystems. From biomedical interest, spiders are important for their venoms and as a source of potent allergens, such as arginine kinase (AK, EC 2.7.3.3). AK is an enzyme crucial for energy metabolism, keeping the pool of phosphagens in invertebrates, and also an allergen for humans. In this work, we studied AK from the Argentininan spider Polybetes pythagoricus (PpAK), from its complementary DNA to the crystal structure. The PpAK cDNA from muscle was cloned, and it is comprised of 1068 nucleotides that encode a 384-amino acids protein, similar to other invertebrate AKs. The apparent Michaelis-Menten kinetic constant (Km) was 1.7 mM with a kcat of 75 s-1. Two crystal structures are presented, the apoPvAK and PpAK bound to arginine, both in the open conformation with the active site lid (residues 310-320) completely disordered. The guanidino group binding site in the apo structure appears to be organized to accept the arginine substrate. Finally, these results contribute to knowledge of mechanistic details of the function of arginine kinase.Instituto de Investigaciones Bioquímicas de La Plat

    Biochemical and structural characterization of a novel arginine kinase from the spider <i>Polybetes pythagoricus</i>

    Get PDF
    Energy buffering systems are key for homeostasis during variations in energy supply. Spiders are the most important predators for insects and therefore key in terrestrial ecosystems. From biomedical interest, spiders are important for their venoms and as a source of potent allergens, such as arginine kinase (AK, EC 2.7.3.3). AK is an enzyme crucial for energy metabolism, keeping the pool of phosphagens in invertebrates, and also an allergen for humans. In this work, we studied AK from the Argentininan spider Polybetes pythagoricus (PpAK), from its complementary DNA to the crystal structure. The PpAK cDNA from muscle was cloned, and it is comprised of 1068 nucleotides that encode a 384-amino acids protein, similar to other invertebrate AKs. The apparent Michaelis-Menten kinetic constant (Km) was 1.7 mM with a kcat of 75 s-1. Two crystal structures are presented, the apoPvAK and PpAK bound to arginine, both in the open conformation with the active site lid (residues 310-320) completely disordered. The guanidino group binding site in the apo structure appears to be organized to accept the arginine substrate. Finally, these results contribute to knowledge of mechanistic details of the function of arginine kinase.Instituto de Investigaciones Bioquímicas de La Plat

    Crystallization under an External Electric Field: A Case Study of Glucose Isomerase

    No full text
    Electric fields have been employed to promote macromolecular crystallization for several decades. Although crystals grown in electric fields seem to present higher diffraction quality, these methods are not widespread. For most configurations, electrodes are in direct contact with the protein solution. Here, we propose a configuration that can be easily extended to standard crystallization methods for which the electrodes are not in direct contact with the protein solution. Furthermore, the proposed electrode configuration supplies an external DC electric field. Glucose Isomerase from Streptomyces rubiginosus crystals were grown at room temperature using the microbatch method in the presence of 1, 2, 4, and 6 kV. Several crystallization trials were carried out for reproducibility and statistical analysis purposes. The comparison with crystals grown in the absence of electric fields showed that crystallization in the presence of electric fields increases the size of crystals, while decreasing the number of nucleations. X-ray diffraction analysis of the crystals showed that those grown in the presence of electric fields are of higher crystal quality
    corecore