3 research outputs found

    Celestial mechanics in Kerr spacetime

    Get PDF
    The dynamical parameters conventionally used to specify the orbit of a test particle in Kerr spacetime are the energy EE, the axial component of the angular momentum, LzL_{z}, and Carter's constant QQ. These parameters are obtained by solving the Hamilton-Jacobi equation for the dynamical problem of geodesic motion. Employing the action-angle variable formalism, on the other hand, yields a different set of constants of motion, namely, the fundamental frequencies ωr\omega_{r}, ωΞ\omega_{\theta} and ωϕ\omega_{\phi} associated with the radial, polar and azimuthal components of orbital motion. These frequencies, naturally, determine the time scales of orbital motion and, furthermore, the instantaneous gravitational wave spectrum in the adiabatic approximation. In this article, it is shown that the fundamental frequencies are geometric invariants and explicit formulas in terms of quadratures are derived. The numerical evaluation of these formulas in the case of a rapidly rotating black hole illustrates the behaviour of the fundamental frequencies as orbital parameters such as the semi-latus rectum pp, the eccentricity ee or the inclination parameter ξ−\theta_{-} are varied. The limiting cases of circular, equatorial and Keplerian motion are investigated as well and it is shown that known results are recovered from the general formulas.Comment: 25 pages (LaTeX), 5 figures, submitted to Class. Quantum Gra
    corecore