16 research outputs found

    Franz Von Papen: 1929-1933: From Backstage Revolutionary to Chancellor to Hitler A Chameleon from the Shadows

    No full text

    Relevance of Histone Marks H3K9me3 and H4K20me3 in Cancer

    No full text
    Background: Circulating nucleosomes are valuable biomarkers for therapy monitoring and estimation of prognosis in cancer disease. While epigenetic and genetic modifications of DNA have been reported in blood of cancer patients, little is known about modifications of histones on circulating nucleosomes. Patients and Methods: Sera of 45 cancer patients (21 colorectal, 4 pancreatic, 15 breast, 5 lung cancer), 12 patients with benign gastrointestinal and inflammatory diseases, and 28 healthy individuals were investigated. Histone modifications were detected by chromatin-immunoprecipitation (ChIP) using antibodies for triple hi stone methylations at sites wH3K9me3 and H4K20me3 and subsequent real-time polymerase chain reaction using primers for the centromeric satellites SAT2. Additionally, the amount of circulating nucleosomes, as well as of carcino-embryonic antigen (CEA) and cancer antigen (CA) 19-9 were measured. Results: Levels of SAT2 on H3K9me3 (median 0.507 ng/ml) and on H4K20me3 (0.292 ng/ml) were elevated in sera of patients with breast cancer when compared with healthy controls (0.049 and 0.035 ng/ml), but were lower in patients with colorectal cancer (0.039 and 0.027 ng/ml). Both histone marks were correlated with each other but did not correlate with CEA or CA 19-9 in cancer patients. When H3K9me3 and H4K20me3 were normalized to nucleosome content in sera, ratios were significantly higher in all types of cancer as well as in colorectal and breast subtypes when compared with healthy controls. Best discrimination was achieved by normalized H4K20me3 reaching areas under the curves (AUC) of 79.1%, 90.4% and 81.2% in receiver operating characteristic (ROC) curves of these three comparisons. Conclusion: SAT2 levels on H3K9me3 and H4K20me3 are up-regulated in breast cancer and down-regulated in colorectal cancer. Normalization to total nucleosome content enables better discrimination between cancer and control groups

    Treatment of advanced gastrointestinal cancer with genetically modified autologous mesenchymal stem cells - TREAT-ME-1-a phase I, first in human, first in class trial

    No full text
    Purpose: This phase I, first in human, first in class clinical study aimed at evaluating the safety, tolerability and efficacy of treatment with genetically modified mesenchymal stromal cells (MSC) in combination with ganciclovir (GCV). MSC_apceth_ 101 are genetically modified autologous MSCs used as vehicles for a cell-based gene therapy in patients with advanced gastrointestinal adenocarcinoma. Experimental design: The study design consisted of a dose-escalation 3 + 3 design. All patients (n = 6) were treated with up to three applications of MSC_apceth_101, followed by GCV infusions given on three consecutive days starting 48 hours after injection of MSC_apceth_101. Three of six patients received a total dose of 1.5 x 10(6) cells/kg. Two patients received three doses of 1 x 10(6) cells/kg, while one patient received only two doses of 1 x 10(6) cells/kg due to a SADR. Results: Six patients received MSC_apceth_101. No IMP-related serious adverse events occurred. Adverse-events related to IMP-injection were increased creatinine, cough, fever, and night sweat. TNF, IL-6, IL-8, IL-10 and sE-Selectin, showed that repeated application is immunologically safe, but induces a switch of the functional properties of monocytes to an inflammatory phenotype. Treatment induced stable disease in 4/6 patients, and progressive disease in 2/6 patients. Conclusion: Treatment with MSC_ apceth_101 in combination with GCV demonstrated acceptable safety and tolerability in patients with advanced gastrointestinal adenocarcinoma

    Treatment of advanced gastrointestinal cancer with genetically modified autologous mesenchymal stem cells: Results from the phase 1/2 TREAT-ME-1 trial

    No full text
    TREAT-ME-1, a Phase 1/2 open-label multicenter, first-in-human, first-in-class trial, evaluated the safety, tolerability and efficacy of treatment with genetically modified autologous mesenchymal stromal cells (MSC), MSC_ apceth_101, in combination with ganciclovir in patients with advanced gastrointestinal adenocarcinoma. Immunological and inflammatory markers were also assessed. All patients (3 in Phase 1; 7 in Phase 2) received three treatment cycles of MSC_apceth_101 at one dose level on Day 0, 7, and 14 followed by ganciclovir administration according to the manufacturer's instructions for 4872 h after MSC_apceth_101 injection. Ten patients were treated with a total dose of 3.0 x 10(6) cells/kg MSC_apceth_101. 36 adverse events and six serious adverse events were reported. Five patients achieved stable disease (change in target lesions of -2 to +28%). For all patients, the median time to progression was 1.8 months (95% CI: 0.5, 3.9 months). Median overall survival could not be estimated as 8/10 patients were still alive at the end of the study (1 year) and therefore censored. Post-study observation of patients showed a median overall survival of 15.6 months (ranging from 2.227.0 months). Treatment with MSC_apceth_101 and ganciclovir did not induce a consistent increase or decrease in levels of any of the tumor markers analyzed. No clear trends in the immunological markers assessed were observed. MSC_apceth_101 in combination with ganciclovir was safe and tolerable in patients with advanced gastrointestinal adenocarcinoma, with preliminary signs of efficacy in terms of clinical stabilization of disease

    The impact of mammalian target of rapamycin inhibition on bone health in postmenopausal women with hormone receptor-positive advanced breast cancer receiving everolimus plus exemestane in the phase IIIb 4EVER trial

    No full text
    Background: Breast cancer and its treatments are associated with a detrimental effect on bone health. Here we report the results of an exploratory analysis assessing changes in levels of biomarkers of bone metabolism in patients enrolled in the phase IIIb 4EVER study. Methods: The 4EVER trial investigated everolimus in combination with exemestane in postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative locally advanced or metastatic breast cancer. In this prespecified exploratory analysis, changes in biomarkers of bone turnover were assessed in patients from baseline to weeks 4, 12, and 24. The serum bone markers assessed were procollagen type 1 N-terminal propeptide (P1NP), C-terminal cross-linking telopeptide of type 1 collagen (CTX), osteocalcin, parathyroid hormone (PTH), and 25-hydroxyvitamin D (25-OH-vitamin D). On-treatment changes in bone markers over time were described per subgroup of interest and efficacy outcomes. Results: Bone marker data were available for 241 of 299 enrolled patients. At the final assessment, P1NP, osteocalcin, PTH, 25-OH-vitamin D (all P < 0.001), and CTX (P = 0.036) were significantly decreased from baseline values per the Wilcoxon signed-rank test. At the last assessment (24 weeks or earlier), levels of serum CTX and PTH were significantly lower (P = 0.009 and P = 0.034, respectively) among patients with vs. without prior antiresorptive treatment (ART). Serum CTX levels were significantly lower (P < 0.001), and 25-OH-vitamin D concentrations significantly higher (P = 0.029), at the last postbaseline assessment in patients receiving concomitant ART vs. those without ART. Changes from baseline in PTH and 25-OH-vitamin D concentrations to the final assessment were significantly smaller in patients with prior ART. Lower baseline serum concentrations of osteocalcin and PTH were associated with clinical response (partial vs. non-response) at 24 weeks. High serum levels of CTX and P1NP at baseline were risk factors for progression at 12 weeks. Conclusions: These exploratory analyses support use of everolimus plus exemestane for the treatment of postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer, and add to the body of evidence suggesting a potentially favorable impact of everolimus on bone turnover. Trial registration: NCT01626222. Registered 22 June 2012, https://clinicaltrials.gov/ct2/show/NCT01626222. Keywords: Bone health, Bone marker, Breast cancer, Everolimus, Hormone receptor-positive, Mammalian target of rapamyci
    corecore