42 research outputs found

    Proficient replication of the yeast genome by a viral DNA polymerase

    Get PDF
    DNA replication in eukaryotic cells requires minimally three B-family DNA polymerases: Pol α, Pol δ, and Pol ϵ. Pol δ replicates and matures Okazaki fragments on the lagging strand of the replication fork. Saccharomyces cerevisiae Pol δ is a three-subunit enzyme (Pol3-Pol31-Pol32). A small C-terminal domain of the catalytic subunit Pol3 carries both iron-sulfur cluster and zinc-binding motifs, which mediate interactions with Pol31, and processive replication with the replication clamp proliferating cell nuclear antigen (PCNA), respectively. We show that the entire N-terminal domain of Pol3, containing polymerase and proofreading activities, could be effectively replaced by those from bacteriophage RB69, and could carry out chromosomal DNA replication in yeast with remarkable high fidelity, provided that adaptive mutations in the replication clamp PCNA were introduced. This result is consistent with the model that all essential interactions for DNA replication in yeast are mediated through the small C-terminal domain of Pol3. The chimeric polymerase carries out processive replication with PCNA in vitro; however, in yeast, it requires an increased involvement of the mutagenic translesion DNA polymerase ζ during DNA replication

    Recent Decisions

    Get PDF

    A four-subunit DNA polymerase ζ complex containing Pol δ accessory subunits is essential for PCNA-mediated mutagenesis

    Get PDF
    DNA polymerase ζ (Pol ζ) plays a key role in DNA translesion synthesis (TLS) and mutagenesis in eukaryotes. Previously, a two-subunit Rev3–Rev7 complex had been identified as the minimal assembly required for catalytic activity in vitro. Herein, we show that Saccharomyces cerevisiae Pol ζ binds to the Pol31 and Pol32 subunits of Pol δ, forming a four-subunit Pol ζ(4) complex (Rev3–Rev7–Pol31–Pol32). A [4Fe-4S] cluster in Rev3 is essential for the formation of Pol ζ(4) and damage-induced mutagenesis. Pol32 is indispensible for complex formation, providing an explanation for the long-standing observation that pol32Δ strains are defective for mutagenesis. The Pol31 and Pol32 subunits are also required for proliferating cell nuclear antigen (PCNA)-dependent TLS by Pol ζ as Pol ζ(2) lacks functional interactions with PCNA. Mutation of the C-terminal PCNA-interaction motif in Pol32 attenuates PCNA-dependent TLS in vitro and mutagenesis in vivo. Furthermore, a mutant form of PCNA, encoded by the mutagenesis-defective pol30-113 mutant, fails to stimulate Pol ζ(4) activity, providing an explanation for the observed mutagenesis phenotype. A stable Pol ζ(4) complex can be identified in all phases of the cell cycle suggesting that this complex is not regulated at the level of protein interactions between Rev3-Rev7 and Pol31-Pol32

    Book Reviews

    Get PDF

    Regulation of yeast DNA polymerase δ-mediated strand displacement synthesis by 5\u27-flaps

    Get PDF
    The strand displacement activity of DNA polymerase δ is strongly stimulated by its interaction with proliferating cell nuclear antigen (PCNA). However, inactivation of the 3′–5′ exonuclease activity is sufficient to allow the polymerase to carry out strand displacement even in the absence of PCNA. We have examined in vitro the basic biochemical properties that allow Pol δ-exo(−) to carry out strand displacement synthesis and discovered that it is regulated by the 5′-flaps in the DNA strand to be displaced. Under conditions where Pol δ carries out strand displacement synthesis, the presence of long 5′-flaps or addition in trans of ssDNA suppress this activity. This suggests the presence of a secondary DNA binding site on the enzyme that is responsible for modulation of strand displacement activity. The inhibitory effect of a long 5′-flap can be suppressed by its interaction with single-stranded DNA binding proteins. However, this relief of flap-inhibition does not simply originate from binding of Replication Protein A to the flap and sequestering it. Interaction of Pol δ with PCNA eliminates flap-mediated inhibition of strand displacement synthesis by masking the secondary DNA site on the polymerase. These data suggest that in addition to enhancing the processivity of the polymerase PCNA is an allosteric modulator of other Pol δ activities

    Recent Decisions

    Get PDF
    Comments on recent decisions by Joseph V. Stodola, Kenneth J. Konop, John H. Tuberty, William M. Cain, John D. Voss, Alvin G. Kolski, and W. D. Rollison

    Pif1 removes a Rap1-dependent barrier to the strand displacement activity of DNA polymerase δ

    Get PDF
    Using an in vitro reconstituted system in this work we provide direct evidence that the yeast repressor/activator protein 1 (Rap1), tightly bound to its consensus site, forms a strong non-polar barrier for the strand displacement activity of DNA polymerase δ. We propose that relief of inhibition may be mediated by the activity of an accessory helicase. To this end, we show that Pif1, a 5′–3′ helicase, not only stimulates the strand displacement activity of Pol δ but it also allows efficient replication through the block, by removing bound Rap1 in front of the polymerase. This stimulatory activity of Pif1 is not limited to the displacement of a single Rap1 molecule; Pif1 also allows Pol δ to carry out DNA synthesis across an array of bound Rap1 molecules that mimics a telomeric DNA-protein assembly. This activity of Pif1 represents a novel function of this helicase during DNA replication

    Functions of the DNA Polymerase Delta Replicase in Lagging Strand Replication

    No full text
    The work described in this dissertation focuses on several aspects of DNA replication in the model organism Saccharomyces cerevisiae, with particular attention paid to the function of the replicative DNA polymerase delta (Pol ), and its functions in Okazaki fragment synthesis and maturation. The first major theme of this dissertation is investigating the role that metal binding motifs play in the structure and function of Pol and other budding yeast polymerases. First, I discuss the role that two metal binding motifs within the catalytic subunit of Pol play in creating the multi-subunit polymerase complex and in promoting crucial interactions with the replication sliding clamp, proliferating cell nuclear antigen (PCNA). Next, I describe work defining the importance of similar metal binding motifs in the translesion DNA polymerase (Pol ). This yielded the observation that the two accessory subunits of Pol, Pol31 and Pol32, are also constitutive members of a four-subunit Pol complex. Finally, I describe the creation of a chimeric DNA polymerase comprising the bacteriophage RB69 DNA polymerase fused to the metal binding domain of the Pol catalytic subunit. We show that this chimeric polymerase can form a multimeric complex containing the Pol accessory subunits, interact with PCNA, and support DNA replication in vivo. This data provided insight into the structural requirements of the lagging strand replication machinery. The second major theme is Pol s crucial role in synthesizing Okazaki fragments and participating in the removal of initiator RNA, called Okazaki fragment maturation. I first describe my work developing a system to study the activity of Pol in higher kinetic detail than previous studies, using rapid-quench techniques. This work yielded insights into how Pol performs DNA synthesis and strand displacement synthesis, as well as accomplishes nick translation, requiring collaboration between Pol and the flap-endonuclease FEN1. The next chapter describes the production and characterization of engineered PCNA heterotrimers. These proteins were produced to test the toolbelt model, which is the hypothesis that PCNA binds multiple enzymes simultaneously to increase the efficiency of DNA metabolism processes involving multiple enzymes. Finally, there has been a growing interest among those studying lagging strand synthesis into how potential impediments to the Okazaki fragment maturation machinery are resolved; we show that although the transcription factor Rap1 can block strand displacement synthesis by Pol when it is bound to DNA, this block can be resolved through the action of the helicase Pif1. In sum, these studies provide insight into how Pol s structure dictates its function, as well as addresses larger mechanistic questions concerning how lagging strand DNA replication is accomplished
    corecore