193 research outputs found
Matrix bandwidth and profile reduction
This program, REDUCE, reduces the bandwidth and profile of sparse symmetric matrices, using row and corresponding column permutations. It is a realization of the algorithm described by the authors elsewhere. It was extensively tested and compared with several other programs and was found to be considerably faster than the others, superior for bandwidth reduction and as satisfactory as any other for profile reduction
Descriptive Complexity of Deterministic Polylogarithmic Time and Space
We propose logical characterizations of problems solvable in deterministic
polylogarithmic time (PolylogTime) and polylogarithmic space (PolylogSpace). We
introduce a novel two-sorted logic that separates the elements of the input
domain from the bit positions needed to address these elements. We prove that
the inflationary and partial fixed point vartiants of this logic capture
PolylogTime and PolylogSpace, respectively. In the course of proving that our
logic indeed captures PolylogTime on finite ordered structures, we introduce a
variant of random-access Turing machines that can access the relations and
functions of a structure directly. We investigate whether an explicit predicate
for the ordering of the domain is needed in our PolylogTime logic. Finally, we
present the open problem of finding an exact characterization of
order-invariant queries in PolylogTime.Comment: Submitted to the Journal of Computer and System Science
Randomisation and Derandomisation in Descriptive Complexity Theory
We study probabilistic complexity classes and questions of derandomisation
from a logical point of view. For each logic L we introduce a new logic BPL,
bounded error probabilistic L, which is defined from L in a similar way as the
complexity class BPP, bounded error probabilistic polynomial time, is defined
from PTIME. Our main focus lies on questions of derandomisation, and we prove
that there is a query which is definable in BPFO, the probabilistic version of
first-order logic, but not in Cinf, finite variable infinitary logic with
counting. This implies that many of the standard logics of finite model theory,
like transitive closure logic and fixed-point logic, both with and without
counting, cannot be derandomised. Similarly, we present a query on ordered
structures which is definable in BPFO but not in monadic second-order logic,
and a query on additive structures which is definable in BPFO but not in FO.
The latter of these queries shows that certain uniform variants of AC0
(bounded-depth polynomial sized circuits) cannot be derandomised. These results
are in contrast to the general belief that most standard complexity classes can
be derandomised. Finally, we note that BPIFP+C, the probabilistic version of
fixed-point logic with counting, captures the complexity class BPP, even on
unordered structures
Logics for Unranked Trees: An Overview
Labeled unranked trees are used as a model of XML documents, and logical
languages for them have been studied actively over the past several years. Such
logics have different purposes: some are better suited for extracting data,
some for expressing navigational properties, and some make it easy to relate
complex properties of trees to the existence of tree automata for those
properties. Furthermore, logics differ significantly in their model-checking
properties, their automata models, and their behavior on ordered and unordered
trees. In this paper we present a survey of logics for unranked trees
An operator representation for Matsubara sums
In the context of the imaginary-time formalism for a scalar thermal field
theory, it is shown that the result of performing the sums over Matsubara
frequencies associated with loop Feynman diagrams can be written, for some
classes of diagrams, in terms of the action of a simple linear operator on the
corresponding energy integrals of the Euclidean theory at T=0. In its simplest
form the referred operator depends only on the number of internal propagators
of the graph.
More precisely, it is shown explicitly that this \emph{thermal operator
representation} holds for two generic classes of diagrams, namely, the
two-vertex diagram with an arbitrary number of internal propagators, and the
one-loop diagram with an arbitrary number of vertices.
The validity of the thermal operator representation for diagrams of more
complicated topologies remains an open problem. Its correctness is shown to be
equivalent to the correctness of some diagrammatic rules proposed a few years
ago.Comment: 4 figures; references added, minor changes in notation, final version
accepted for publicatio
Evaluating QBF Solvers: Quantifier Alternations Matter
We present an experimental study of the effects of quantifier alternations on
the evaluation of quantified Boolean formula (QBF) solvers. The number of
quantifier alternations in a QBF in prenex conjunctive normal form (PCNF) is
directly related to the theoretical hardness of the respective QBF
satisfiability problem in the polynomial hierarchy. We show empirically that
the performance of solvers based on different solving paradigms substantially
varies depending on the numbers of alternations in PCNFs. In related
theoretical work, quantifier alternations have become the focus of
understanding the strengths and weaknesses of various QBF proof systems
implemented in solvers. Our results motivate the development of methods to
evaluate orthogonal solving paradigms by taking quantifier alternations into
account. This is necessary to showcase the broad range of existing QBF solving
paradigms for practical QBF applications. Moreover, we highlight the potential
of combining different approaches and QBF proof systems in solvers.Comment: preprint of a paper to be published at CP 2018, LNCS, Springer,
including appendi
- …