159 research outputs found

    Small airways dysfunction:The importance of utilising Z-scores to define MMEF abnormalities in clinical practice

    Get PDF
    BACKGROUND: The small airways comprise the largest cross-sectional area of the lungs, however, assessing and reporting abnormalities for this region of the bronchial tree has been practically and scientifically uncertain.METHODS: Using routinely collected spirometry data for patients with either asthma or COPD, the accuracy of % predicted values for defining small airways dysfunction was assessed. A z-score of ≀ -1.645 of the maximal-mid expiratory flow (MMEF) was used as the gold standard for defining abnormality in the small airways.RESULTS: Records of 3396 patients were included in the analysis. The false positive (FP) rates were 24.6 %, 16.1 %, 11.5 %, or 7.9 % when the % predicted value of 80 %, 70 %, 65 %, or 60 % were used, respectively. Sex, age, and BMI were associated with FP rates. Males were more likely to be categorised as FP with odds ratio (OR) between 1.10 and 1.49 across % predicted groups. Age was associated with FP rates with an OR between 1.01 and 1.08. The BMI was also associated with FP rates with an OR of 1.03 across all % predicted groups. Assessing the association of age groups with FP rate showed that those above 60 years old were more likely to be categorised as FP with an OR between 1.23 and 73.2 compared to those less than 30 years old.CONCLUSION: When assessing the small airways in clinical practice or for scientific purposes, the % predicted values overestimate the actual impairment leading to FP interpretation. Utilising z-score values are recommended to assess the small airways using the spirometric index, MMEF.</p

    TNF- α Autocrine Feedback Loops in Human Monocytes:The Pro- and Anti-Inflammatory Roles of the TNF- α Receptors Support the Concept of Selective TNFR1 Blockade in Vivo

    Get PDF
    Selective TNFR1 blockade in inflammatory diseases is emerging as a clinical strategy. We studied the roles of the two TNF-α receptors, TNFR1 and TNFR2, in human monocytes, the principal producer of TNF-α and central to many TNF-α driven diseases. We hypothesised that TNF-α has pro- and anti-inflammatory effects on monocytes, occurring differentially via TNFR1 and TNFR2. Monocytes were isolated from healthy human subjects and exposed to LPS, plus/minus the addition of blocking antibodies to TNF-α or its receptors. Pro- and anti-inflammatory cytokine production was quantified using real-time PCR and ELISAs. Cell surface expression of TNFR1/2 was measured by flow cytometry. We demonstrated that monocytes vary in the expression patterns of TNFR1 and TNFR2. Autocrine binding of TNF-α led to sustained upregulation of proinflammatory cytokines via TNFR1. In contrast, autocrine binding via TNFR2 upregulated the anti-inflammatory cytokine, IL-10, without proinflammatory effect. TNFR2 was responsible for binding soluble TNF-α secreted by monocytes, clearing the cytokine from the pericellular environment. TNFR1 blockade did not change the cell surface expression of TNFR2, leaving this receptor free to upregulate IL-10. These novel results support the concept of selective TNFR1 blockade in vivo in order that positive anti-inflammatory effects of TNF-α can be retained via TNFR2 ligation

    Small airways disease:time for a revisit?

    Get PDF
    James A Stockley,1 Brendan G Cooper,1 Robert A Stockley,2 Elizabeth Sapey3 1Department of Lung Function and Sleep, 2Department of Respiratory Medicine, University Hospital Birmingham, 3Institute of Inflammation and Ageing, Centre for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham, UK Abstract: It is increasingly acknowledged that delays in the diagnosis of chronic inflammatory lung conditions have hampered our understanding of pathogenesis and thus our ability to design efficacious therapies. This is particularly true for COPD, where most patients are diagnosed with moderate-to-severe airflow obstruction and little is known about the inflammatory processes present in early disease. There is great interest in developing screening tests that can identify those most at risk of developing COPD before airflow obstruction has developed for the purpose of research and clinical care. Landmark pathology studies have suggested that damage to the small airways precedes the development of airflow obstruction and emphysema and, thus, presents an opportunity to identify those at risk of COPD. However, despite a number of physiological tests being available to assess small airways function, none have been adopted into routine care in COPD. The reasons that tests of small airways have not been utilized widely include variability in test results and a lack of validated reference ranges from which to compare results for some methodologies. Furthermore, population studies have not consistently demonstrated their ability to diagnose disease. However, the landscape may be changing. As the equipment that delivers tests of small airways become more widely available, reference ranges are emerging and newer methodologies specifically seek to address variability and difficulty in test performance. Moreover, there is evidence that while tests of small airways may not be helpful across the full range of established disease severity, there may be specific groups (particularly those with early disease) where they might be informative. In this review, commonly utilized tests of small airways are critically appraised to highlight why these tests may be important, how they can be used and what knowledge gaps remain for their use in COPD. Keywords: small airways, COPD, early disease, physiology, emphysema, airflow obstructio

    The prevalence of bronchiectasis in patients with alpha-1 antitrypsin deficiency: initial report of EARCO

    Get PDF
    Alpha-1 antitrypsin deficiency; Emphysema; PrevalenceDeficiÚncia d'alfa-1 antitripsina; Emfisema; PrevalençaDeficiencia de alfa-1 antitripsina; Enfisema; PrevalenciaBackground Although bronchiectasis has been recognised as a feature of some patients with Alpha1-Antitrypsin deficiency the prevalence and characteristics are not widely known. We wished to determine the prevalence of bronchiectasis and patient characteristics. The first cohort of patients recruited to the EARCO (European Alpha1 Research Collaboration) International Registry data base by the end of 2021 was analysed for radiological evidence of both emphysema and bronchiectasis as well as baseline demographic features. Results Of the first 505 patients with the PiZZ genotype entered into the data base 418 (82.8%) had a reported CT scan. There were 77 (18.4%) with a normal scan and 38 (9.1%) with bronchiectasis alone. These 2 groups were predominantly female never smokers and had lung function in the normal range. The remaining 303 (72.5%) ZZ patients all had emphysema on the scan and 113 (27%) had additional evidence of bronchiectasis. Conclusions The data indicates the bronchiectasis alone is a feature of 9.1% of patients with the PiZZ genotype of Alpha1-antitrypsin deficiency but although emphysema is the dominant lung pathology bronchiectasis is also present in 27% of emphysema cases and may require a different treatment strategy.The International EARCO registry is funded by unrestricted grants of Grifols, CSL Behring, Kamada, pH Pharma and Takeda to the European Respiratory Society (ERS)

    Augmentation therapy for alpha-1 antitrypsin deficiency: towards a personalised approach

    Get PDF
    BACKGROUND: Intravenous augmentation therapy is the only specific treatment available for emphysema associated with alpha-1 antitrypsin deficiency. Despite large observational studies and limited interventional studies there remains controversy about the efficacy of this treatment due to the impracticality of conducting adequately powered studies to evaluate the rate of decline in lung function, due to the low prevalence and the slow progression of the disease. However, measurement of lung density by computed tomography is a more specific and sensitive marker of the evolution of emphysema and two small placebo-controlled clinical trials have provided evidence supporting a reduction in the rate of decline in lung density with augmentation therapy. THE PROBLEM: Where augmentation therapy has become available there has been little consideration of a structured approach to therapy which is often introduced on the basis of functional impairment at diagnosis. Data from registries have shown a great variability in the evolution of lung disease according to patient acquisition and the presence of recognised risk factors. Avoidance of risk factors may, in many cases, stabilise the disease. Since augmentation therapy itself will at best preserve the presenting level of lung damage yet require intravenous administration for life with associated costs, identification of patients at risk of continued rapid or long term progression is essential to select those for whom this treatment can be most appropriate and hence generally more cost-effective. This represents a major reconsideration of the current practice in order to develop a consistent approach to management world wide. PURPOSE OF THIS REVIEW: The current review assesses the evidence for efficacy of augmentation therapy and considers how the combination of age, physiological impairment, exacerbation history and rate of decline in spirometry and other measures of emphysema may be used to improve therapeutic decision making, until a reliable predictive biomarker of the evolution of lung impairment can be identified. In addition, individual pharmacokinetic studies may permit the selection of the best regimen of administration for those who need it. SUMMARY: The rarity and variable characteristics of the disease imply the need for an individualised approach to therapy in specialised centres with sufficient experience to apply a systematic approach to monitoring and management

    Relationship of CT densitometry to lung physiological parameters and health status in alpha-1 antitrypsin deficiency: initial report of a centralised database of the NIHR rare diseases translational research collaborative.

    Get PDF
    Funder: Foundation for the National Institutes of Health; FundRef: http://dx.doi.org/10.13039/100000009OBJECTIVES: To establish a database network for the study of alpha-1 antitrypsin deficiency (AATD) and compare the results to CT lung density as the most direct measure of emphysema. DESIGN: A central electronic database was established to permit the upload of anonymised patient data from remote sites. Prospectively collected CT data were recorded onto disc, anonymised, analysed at the coordinating centre and compared with the clinical features of the disease. SETTING: Tertiary referral centres with expertise in the management of AATD focused on academic Biomedical Research Units and Wellcome Clinical Research Facilities. PARTICIPANTS: Data were collected from 187 patients over 1 year from eight UK academic sites. This included patient demographics, postbronchodilator physiology, health status and CT. Analysis was undertaken at the coordinating centre in Birmingham. RESULTS: Patient recruitment in the 12 months reached 94% of target (set at 200) covering the whole spectrum of the disease from those with normal lung function to very severe chronic obstructive lung disease. CT scan suitable for analysis was available from 147 (79%) of the patients. CT density, analysed as the threshold for the lowest 15% of lung voxels, showed statistically significant relationships with the objective physiological parameters of lung function as determined by spirometric Global Initiative for Chronic Obstructive Lung Disease (GOLD) severity staging (p<0.001) and carbon monoxide gas transfer (p<0.01). Density also correlated with subjective measures of quality of life (p=0.02). CONCLUSIONS: Establishment of the network for data collection and its transfer was highly successful facilitating future collaboration for the study of this rare disease and its management. CT densitometry correlated well with the objective clinical features of the disease supporting its role as the specific marker of the associated emphysema and its severity. Correlations with subjective measures of health, however, were generally weak indicating other factors play a role

    Cardiovascular and musculskeletal co-morbidities in patients with alpha 1 antitrypsin deficiency

    Get PDF
    Background Determining the presence and extent of co-morbidities is fundamental in assessing patients with chronic respiratory disease, where increased cardiovascular risk, presence of osteoporosis and low muscle mass have been recognised in several disease states. We hypothesised that the systemic consequences are evident in a further group of subjects with COPD due to Alpha-1 Antitrypsin Deficiency (A1ATD), yet are currently under-recognised. Methods We studied 19 patients with PiZZ A1ATD COPD and 20 age, sex and smoking matched controls, all subjects free from known cardiovascular disease. They underwent spirometry, haemodynamic measurements including aortic pulse wave velocity (aPWV), an independent predictor or cardiovascular risk, dual energy X-ray absorptiometry to determine body composition and bone mineral density. Results The aPWV was greater in patients: 9.9(2.1) m/s than controls: 8.5(1.6) m/s, p = 0.03, despite similar mean arterial pressure (MAP). The strongest predictors of aPWV were age, FEV1% predicted and MAP (all p < 0.01). Osteoporosis was present in 8/19 patients (2/20 controls) and was previously unsuspected in 7 patients. The fat free mass and bone mineral density were lower in patients than controls (p < 0.001). Conclusions Patients with A1ATD related COPD have increased aortic stiffness suggesting increased risk of cardiovascular disease and evidence of occult musculoskeletal changes, all likely to contribute hugely to overall morbidity and mortality

    Revealing the density of encoded functions in a viral RNA

    Get PDF
    Nikesh Patel, et al, ‘Revealing the density of encoded functions in a viral RNA’, Proceedings of the National Academy of Sciences of the United States of America (PNAS), Vol. 112 (7): 2227-2232, February 2015, doi: http:dx.doi.org/10. 1073/pnas.1420812112. This article is freely available online through the PNAS open access option.We present direct experimental evidence that assembly of a single-stranded RNA virus occurs via a packaging signal-mediated mechanism. We show that the sequences of coat protein recognition motifs within multiple, dispersed, putative RNA packaging signals, as well as their relative spacing within a genomic fragment, act collectively to influence the fidelity and yield of capsid self-assembly in vitro. These experiments confirm that the selective advantages for viral yield and encapsidation specificity, predicted from previous modeling of packaging signal-mediated assembly, are found in Nature. Regions of the genome that act as packaging signals also function in translational and transcriptional enhancement, as well as directly coding for the coat protein, highlighting the density of encoded functions within the viral RNA. Assembly and gene expression are therefore direct molecular competitors for different functional folds of the same RNA sequence. The strongest packaging signal in the test fragment, encodes a region of the coat protein that undergoes a conformational change upon contact with packaging signals. A similar phenomenon occurs in other RNA viruses for which packaging signals are known. These contacts hint at an even deeper density of encoded functions in viral RNA, which if confirmed, would have profound consequences for the evolution of this class of pathogensPeer reviewedFinal Published versio
    • 

    corecore