36 research outputs found

    Immunomodulatory Effects of Streptococcus suis Capsule Type on Human Dendritic Cell Responses, Phagocytosis and Intracellular Survival

    Get PDF
    Streptococcus suis is a major porcine pathogen of significant commercial importance worldwide and an emerging zoonotic pathogen of humans. Given the important sentinel role of mucosal dendritic cells and their importance in induction of T cell responses we investigated the effect of different S. suis serotype strains and an isogenic capsule mutant of serotype 2 on the maturation, activation and expression of IL-10, IL-12p70 and TNF-α in human monocyte-derived dendritic cells. Additionally, we compared phagocytosis levels and bacterial survival after internalization. The capsule of serotype 2, the most common serotype associated with infection in humans and pigs, was highly anti-phagocytic and modulated the IL-10/IL-12 and IL-10/TNF-α cytokine production in favor of a more anti-inflammatory profile compared to other serotypes. This may have consequences for the induction of effective immunity to S. suis serotype 2 in humans. A shielding effect of the capsule on innate Toll-like receptor signaling was also demonstrated. Furthermore, we showed that 24 h after phagocytosis, significant numbers of viable intracellular S. suis were still present intracellularly. This may contribute to the dissemination of S. suis in the body

    Correction:How the COVID-19 pandemic highlights the necessity of animal research (vol 30, pg R1014, 2020)

    Get PDF
    (Current Biology 30, R1014–R1018; September 21, 2020) As a result of an author oversight in the originally published version of this article, a number of errors were introduced in the author list and affiliations. First, the middle initials were omitted from the names of several authors. Second, the surname of Dr. van Dam was mistakenly written as “Dam.” Third, the first name of author Bernhard Englitz was misspelled as “Bernard” and the surname of author B.J.A. Pollux was misspelled as “Pullox.” Finally, Dr. Keijer's first name was abbreviated rather than written in full. These errors, as well as various errors in the author affiliations, have now been corrected online

    Oral immunization of pigs with viable or inactivated Actinobacillus pleuropneumoniae serotype 9 induces pulmonary and systemic antibodies and protects against homologous aerosol challenge.

    No full text
    A dose-defined aerosol infection of pigs was used to study the immunogenic and protective potentials of oral immunization with dead or live Actinobacillus pleuropneumoniae serotype 9 reference strain CVI 13261 against an aerogenic challenge. Pigs were vaccinated with a single dose of 10(11) CFU of viable (n = 8) or inactivated (n = 8) A. pleuropneumoniae given orally in a gelatin capsule. After 3 weeks, vaccinated pigs and nonvaccinated controls were challenged aerogenically with a dose of 10(8) CFU of A. pleuropneumoniae CVI 13261. The protective efficacy of oral immunization was evaluated by clinical and postmortem examinations. Bronchoalveolar lavage in pigs was performed during the experiment to obtain lavage samples for assessment of local antibodies. Isotype-specific antibody responses in sera and in bronchoalveolar lavage fluids were determined by enzyme-linked immunosorbent assays based on whole-cell antigen. Oral immunization did not induce clinical side effects. After aerosol challenge, two animals of both vaccinated groups (25% in each case) showed a moderate fever for 2 days, whereas all four pigs (100%) of the nonvaccinated control group developed severe fever. In contrast to the controls, which developed severe pleuropneumonia, the vaccinated pigs had only mild pulmonary lesions. Three weeks after challenge, 13 of 16 vaccinated pigs (81%) were found to be free of pathomorphological changes of the lungs. From two of these pigs immunized with live bacteria we were able to reisolate A. pleuropneumoniae. A significant systemic and pulmonary increase in the concentrations of immunoglobulin A (IgA), IgM, and IgG antibodies reactive with A. pleuropneumoniae was detectable after aerosol challenge in both vaccinated groups. Immunization with viable bacteria was found to induce significantly higher concentrations of each Ig isotype in bronchoalveolar lavage fluids and sera than immunization with inactivated A. pleuropneumoniae. These serological findings were not reflected in the reduction in clinical disease after challenge in comparison to the case for the pigs vaccinated with inactivated bacteria. We concluded that a single oral administration of A. pleuropneumoniae provides partial clinical protection against aerosol challenge infection in the respiratory tract

    Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of <i>Streptococcus suis</i> strains isolated from diseased pigs in seven European countries

    No full text
    Streptococcus suis strains (n=411), isolated from diseased pigs in seven European countries were serotyped using specific antisera against serotype 1 to 28, and were phenotyped on the basis of their muramidase-released-protein (MRP) and extracellular-factor protein (EF) production. Overall, S. suis serotype 2 appeared to be most prevalent (32%), followed by serotype 9 (20%) and serotype 1 (12%). Serotype 2 was most frequently isolated in France, Italy and Spain, whereas serotype 9 was most frequently isolated in Belgium, The Netherlands and Germany. In the United Kingdom serotypes 1 and 14 were most frequently isolated. High percentages of S. suis serotype 1, 2, 1/2 and 14 strains, isolated from tissues associated with S. suis infections such as brain, serosa, joint, heart and organs expressed the EF-protein, indicating that in these serotypes expression of EF is likely to be associated with virulence. In contrast, strains belonging to serotype 7 and 9, isolated from tissues associated with S. suis infections did not produce EF. These results strongly suggest that in the serotypes 7 and 9 EF expression is not related to virulence. More than 80% of the S. suis serotype 9 strains produced an MRP* protein, a high molecular variant of the 136kDa MRP. Expression of MRP* in serotype 9 strains is possibly associated with virulence

    Host Cell Contact-Induced Transcription of the Type IV Fimbria Gene Cluster of Actinobacillus pleuropneumoniae

    Get PDF
    Type IV pili (Tfp) of gram-negative species share many characteristics, including a common architecture and conserved biogenesis pathway. Much less is known about the regulation of Tfp expression in response to changing environmental conditions. We investigated the diversity of Tfp regulatory systems by searching for the molecular basis of the reported variable expression of the Tfp gene cluster of the pathogen Actinobacillus pleuropneumoniae. Despite the presence of an intact Tfp gene cluster consisting of four genes, apfABCD, no Tfp were formed under standard growth conditions. Sequence analysis of the predicted major subunit protein ApfA showed an atypical alanine residue at position −1 from the prepilin peptidase cleavage site in 42 strains. This alanine deviates from the consensus glycine at this position in Tfp from other species. Yet, cloning of the apfABCD genes under a constitutive promoter in A. pleuropneumoniae resulted in pilin and Tfp assembly. Tfp promoter-luxAB reporter gene fusions demonstrated that the Tfp promoter was intact but tightly regulated. Promoter activity varied with bacterial growth phase and was detected only when bacteria were grown in chemically defined medium. Infection experiments with cultured epithelial cells demonstrated that Tfp promoter activity was upregulated upon adherence of the pathogen to primary cultures of lung epithelial cells. Nonadherent bacteria in the culture supernatant exhibited virtually no promoter activity. A similar upregulation of Tfp promoter activity was observed in vivo during experimental infection of pigs. The host cell contact-induced and in vivo-upregulated Tfp promoter activity in A. pleuropneumoniae adds a new dimension to the diversity of Tfp regulation
    corecore