149 research outputs found

    Using non-homogeneous point process statistics to find multi-species event clusters in an implanted semiconductor

    Get PDF
    The Poisson distribution of event-to-ith-nearest-event radial distances is well known for homogeneous processes that do not depend on location or time. Here we investigate the case of a non-homogeneous point process where the event probability (and hence the neighbour configuration) depends on location within the event space. The particular non-homogeneous scenario of interest to us is ion implantation into a semiconductor for the purposes of studying interactions between the implanted impurities. We calculate the probability of a simple cluster based on nearest neighbour distances, and specialise to a particular two-species cluster of interest for qubit gates. We show that if the two species are implanted at different depths there is a maximum in the cluster probability and an optimum density profile

    Detection of T wave peak for serial comparisons of JTp interval

    Get PDF
    Electrocardiogram (ECG) studies of drug-induced prolongation of the interval between the J point and the peak of the T wave (JTp interval) distinguished QT prolonging drugs that predominantly block the delayed potassium rectifier current from those affecting multiple cardiac repolarisation ion channel currents. Since the peak of the T wave depends on ECG lead, a “global” T peak requires to combine ECG leads into one-dimensional signal in which the T wave peak can be measured. This study aimed at finding the optimum one-dimensional representation of 12-lead ECGs for the most stable JTp measurements. Seven different one-dimensional representations were investigated including the vector magnitude of the orthogonal XYZ transformation, root mean square of all 12 ECG leads, and the vector magnitude of the 3 dominant orthogonal leads derived by singular value decomposition. All representations were applied to the representative waveforms of 660,657 separate 10-second 12-lead ECGs taken from repeated day-time Holter recordings in 523 healthy subjects aged 33.5±8.4 years (254 women). The JTp measurements were compared with the QT intervals and with the intervals between the J point and the median point of the area under the T wave one-dimensional representation (JT50 intervals) by means of calculating the residuals of the subject-specific curvilinear regression models relating the measured interval to the hysteresis-corrected RR interval of the underlying heart rate. The residuals of the regression models (equal to the intra-subject standard deviations of individually heart rate corrected intervals) expressed intra-subject stability of interval measurements. For both the JTp intervals and the JT50 intervals, the curvilinear regression residuals of measurements derived from the orthogonal XYZ representation were marginally but statistically significantly lower compared to the other representations. Using the XYZ representation, the residuals of the QT/RR, JTp/RR and JT50/RR regressions were 5.6±1.1 ms, 7.2±2.2 ms, and 4.9±1.2 ms, respectively (all statistically significantly different; p<0.0001). The study concludes that the orthogonal XYZ ECG representation might be proposed for future investigations of JTp and JT50 intervals. If the ability of classifying QT prolonging drugs is further confirmed for the JT50 interval, it might be appropriate to replace the JTp interval since it appears more stable

    The rate of spontaneous cleavage of the glycosidic bond of adenosine

    Get PDF
    Previous estimates of the rate of spontaneous cleavage of the glycosidic bond of adenosine were determined by extrapolating the rates of the acid - and base-catalyzed reactions to neutral pH. Here we show that cleavage also proceeds through a pH-independent mechanism. Rate constants were determined as a function of temperature at pH 7 and a linear Arrhenius plot was constructed. Uncatalyzed cleavage occurs with a rate constant of 3.7 × 10−12 s−1 at 25 °C, and the rate enhancement generated by the corresponding glycoside hydrolase is ~5 × 1012-fold

    Enhanced diffusion and bound exciton interactions of high density implanted bismuth donors in silicon

    Get PDF
    This study reports the effect of an increasing ion dose on both the electrical activation yield and the characteristic properties of implanted bismuth donors in silicon. A strong dependence of implant fluence is observed on both the yield of bismuth donors and the measured impurity diffusion. This is such that higher ion concentrations result in both a decrease in activation and an enhancement in donor migration through interactions with mobile silicon lattice vacancies and interstitials. Furthermore, the effect of implant fluence on the properties of the Si:Bi donor bound exciton, D0X, is also explored using photoluminescence (PL) measurements. In the highest density sample, centers corresponding to the PL of bismuth D0Xs within both the high density region and the lower concentration diffused tail of the implanted donor profile are identifiable

    A Proposal for Integrated Efficacy-to-Effectiveness (E2E) Clinical Trials

    Get PDF
    We propose an “efficacy-to-effectiveness” (E2E) clinical trial design, in which an effectiveness trial would commence seamlessly upon completion of the efficacy trial. Efficacy trials use inclusion/exclusion criteria to produce relatively homogeneous samples of participants with the target condition, conducted in settings that foster adherence to rigorous clinical protocols. Effectiveness trials use inclusion/exclusion criteria that generate heterogeneous samples that are more similar to the general patient spectrum, conducted in more varied settings, with protocols that approximate typical clinical care. In E2E trials, results from the efficacy trial component would be used to design the effectiveness trial component, to confirm and/or discern associations between clinical characteristics and treatment effects in typical care, and potentially to test new hypotheses. An E2E approach may improve the evidentiary basis for selecting treatments, expand understanding of the effectiveness of treatments in subgroups with particular clinical features, and foster incorporation of effectiveness information into regulatory processes.National Center for Research Resources (U.S.) (Grant UL1 RR025752)National Center for Advancing Translational Sciences (U.S.) (Grant UL1 TR000073

    A Universality in Oscillating Flows

    Full text link
    We show that oscillating flow of a simple fluid in both the Newtonian and the non-Newtonian regime can be described by a universal function of a single dimensionless scaling parameter ωτ\omega\tau, where ω\omega is the oscillation (angular) frequency and τ\tau is the fluid relaxation-time; geometry and linear dimension bear no effect on the flow. Experimental energy dissipation data of mechanical resonators in a rarefied gas follow this universality closely in a broad linear dimension (10610^{-6} m<L<102< L < 10^{-2} m) and frequency (10510^5 Hz <ω/2π<108< \omega/2\pi < 10^8 Hz) range. Our results suggest a deep connection between flows of simple and complex fluids.Comment: To be published in Physical Review Letter

    Environmental chemical exposures and disturbances of heme synthesis.

    Get PDF
    Porphyrias are relatively uncommon inherited or acquired disorders in which clinical manifestations are attributable to a disturbance of heme synthesis (porphyrin metabolism), usually in association with endogenous or exogenous stressors. Porphyrias are characterized by elevations of heme precursors in blood, urine, and/or stool. A number of chemicals, particularly metals and halogenated hydrocarbons, induce disturbances of heme synthesis in experimental animals. Certain chemicals have also been linked to porphyria or porphyrinuria in humans, generally involving chronic industrial exposures or environmental exposures much higher than those usually encountered. A noteworthy example is the Turkish epidemic of porphyria cutanea tarda produced by accidental ingestion of wheat treated with the fungicide hexachlorobenzene. Measurements of excreted heme precursors have the potential to serve as biological markers for harmful but preclinical effects of certain chemical exposures; this potential warrants further research and applied field studies. It has been hypothesized that several otherwise unexplained chemical-associated illnesses, such as multiple chemical sensitivity syndrome, may represent mild chronic cases of porphyria or other acquired abnormalities in heme synthesis. This review concludes that, although it is reasonable to consider such hypotheses, there is currently no convincing evidence that these illnesses are mediated by a disturbance of heme synthesis; it is premature or unfounded to base clinical management on such explanations unless laboratory data are diagnostic for porphyria. This review discusses the limitations of laboratory measures of heme synthesis, and diagnostic guidelines are provided to assist in evaluating the symptomatic individual suspected of having a porphyria

    Fluorescence imaging through dynamic scattering media with speckle-encoded ultrasound-modulated light correlation

    Get PDF
    Fluorescence imaging is indispensable to biomedical research, and yet it remains challenging to image through dynamic scattering samples. Techniques that combine ultrasound and light as exemplified by ultrasound-assisted wavefront shaping have enabled fluorescence imaging through scattering media. However, the translation of these techniques into in vivo applications has been hindered by the lack of high-speed solutions to counter the fast speckle decorrelation of dynamic tissue. Here, we report an ultrasound-enabled optical imaging method that instead leverages the dynamic nature to perform imaging. The method utilizes the correlation between the dynamic speckle-encoded fluorescence and ultrasound-modulated light signal that originate from the same location within a sample. We image fluorescent targets with an improved resolution of ≤75 µm (versus a resolution of 1.3 mm with direct optical imaging) within a scattering medium with 17 ms decorrelation time. This new imaging modality paves the way for fluorescence imaging in highly scattering tissue in vivo
    corecore