15 research outputs found

    Genetic predictors of systemic sclerosis-associated interstitial lung disease: a review of recent literature

    Get PDF
    The interplay between genetic and environmental factors is likely involved in the pathogenesis of systemic sclerosis (SSc). Interstitial lung disease associated in the context of SSc (SSc-ILD) is associated with significant morbidity, and is the leading cause of death in SSc. The spectrum of SSc-ILD severity is wide, ranging from patients with only limited and inherently stable pulmonary involvement, to those with extensive and progressive pulmonary fibrosis. In order to provide accurate prognostic information for patients, and to initiate appropriate monitoring and treatment regimens, the ability to identify patients at risk of developing severe ILD early in the disease course is crucial. Identification of genetic variants involved in disease pathogenesis can not only potentially provide diagnostic/prognostic markers, but can also highlight dysregulated molecular pathways for therapeutic targeting. A number of genetic associations have been established for susceptibility to SSc, but far fewer studies have investigated genetic susceptibility to SSc-ILD specifically. In this review we present a summary of the studies assessing genetic associations with SSc-ILD

    Serum C-reactive protein is associated with earlier mortality across different interstitial lung diseases

    Get PDF
    Background and Objective: The acute-phase protein C-reactive protein (CRP) is known to be associated with poor outcomes in cancer and cardiovascular disease, but there is limited evidence of its prognostic implications in interstitial lung diseases (ILDs). We therefore set out to test whether baseline serum CRP levels are associated with mortality in four different ILDs. Methods: In this retrospective study, clinically measured CRP levels, as well as baseline demographics and lung function measures, were collected for ILD patients first presenting to the Royal Brompton Hospital between January 2010 and December 2019. Cox regression analysis was used to determine the relationship with 5-year mortality. Results: Patients included in the study were: idiopathic pulmonary fibrosis (IPF) n = 422, fibrotic hypersensitivity pneumonitis (fHP) n = 233, rheumatoid arthritis associated ILD (RA-ILD) n = 111 and Systemic Sclerosis associated ILD (SSc-ILD) n = 86. Patients with a recent history of infection were excluded. Higher CRP levels were associated with shorter 5-year survival in all four disease groups on both univariable analyses, and after adjusting for age, gender, smoking history, immunosuppressive therapy and baseline disease severity (IPF: HR (95% CI): 1.3 (1.1–1.5), p = 0.003, fHP: 1.5 (1.2–1.9), p = 0.001, RA-ILD: 1.4 (1.1–1.84), p = 0.01 and SSc-ILD: 2.7 (1.6–4.5), p < 0.001). Conclusion: Higher CRP levels are independently associated with reduced 5-year survival in IPF, fHP, RA-ILD and SSc-ILD

    Defining genetic risk factors for scleroderma-associated interstitial lung disease

    Get PDF
    Although several genetic associations with scleroderma (SSc) are defined, very little is known on genetic susceptibility to SSc-associated interstitial lung disease (SSc-ILD). A number of common polymorphisms have been associated with SSc-ILD, but most have not been replicated in separate populations. Four SNPs in IRF5, and one in each of STAT4, CD226 and IRAK1, selected as having been previously the most consistently associated with SSc-ILD, were genotyped in 612 SSc patients, of European descent, of whom 394 had ILD. The control population (n = 503) comprised individuals of European descent from the 1000 Genomes Project. After Bonferroni correction, two of the IRF5 SNPs, rs2004640 (OR (95% CI)1.30 (1.10–1.54), p^{corr} = 0.015) and rs10488631 (OR 1.48 (1.14–1.92), p^{corr} = 0.022), and the STAT4 SNP rs7574865 (OR 1.43 (1.18–1.73), p^{corr} = 0.0015) were significantly associated with SSc compared with controls. However, none of the SNPs were significantly different between patients with SSc-ILD and controls. Two SNPs in IRF5, rs10488631 (OR 1.72 (1.24–2.39), p^{corr} = 0.0098), and rs2004640 (OR 1.39 (1.11–1.75), p^{corr} = 0.03), showed a significant difference in allele frequency between controls and patients without ILD, as did STAT4 rs7574865 (OR 1.86 (1.45–2.38), p^{corr} = 6.6 × 10^{-6}). A significant difference between SSc with and without ILD was only observed for STAT4 rs7574865, being less frequent in patients with ILD (OR 0.66 (0.51–0.85), p^{corr} = 0.0084). In conclusion, IRF5 rs2004640 and rs10488631, and STAT4 rs7574865 were significantly associated with SSc as a whole. Only STAT4 rs7574865 showed a significant difference in allele frequency in SSc-ILD, with the T allele being protective against ILD

    Short-term lung function changes predict mortality in patients with fibrotic hypersensitivity pneumonitis

    Get PDF
    Background and objective A proportion of patients with fibrotic hypersensitivity pneumonitis (fHP) follow a progressive disease course despite immunosuppressive treatment. Little is known about predictors of mortality in fHP. We aimed to investigate the impact of short-term lung function changes in fHP on mortality. Methods Baseline demographics for 145 consecutive patients with a multi-disciplinary team diagnosis of fHP, as well as baseline and 1-year follow-up of lung function, baseline echocardiographic findings, bronchoalveolar lavage (BAL) cellularity and all-cause mortality were recorded. Changes in forced vital capacity (FVC) ≥ 5% and ≥10%, and diffusion capacity of the lung for carbon monoxide (DLCO) ≥ 10% and ≥15% at 1 year were calculated. Cox proportional hazards analysis was performed to test for associations with mortality. Results Baseline lung function severity, age, presence of honeycombing on computed tomography (CT) and echocardiographic pulmonary arterial systolic pressure (PASP) ≥ 40 mm Hg were associated with early mortality, while BAL lymphocytosis was associated with improved survival. A decline in FVC ≥ 5% (hazard ratio [HR]: 3.10, 95% CI: 2.00–4.81, p < 0.001), FVC ≥ 10% (HR: 3.11, 95% CI: 1.94–4.99, p < 0.001), DLCO ≥ 10% (HR: 2.80, 95% CI: 1.78–4.42, p < 0.001) and DLCO ≥ 15% (HR: 2.92, 95% CI: 1.18–4.72, p < 0.001) at 1 year was associated with markedly reduced survival on univariable and multivariable analyses after correcting for demographic variables, disease severity, honeycombing on CT and treatment, as well as BAL lymphocytosis and PASP ≥ 40 mm Hg on echocardiography, in separate models. Conclusion Worsening in FVC and DLCO at 1 year, including a marginal decline in FVC ≥ 5% and DLCO ≥ 10%, is predictive of markedly reduced survival in fHP

    Bromodomain and extra-terminal (BET) protein inhibition restores redox balance and inhibits myofibroblast activation

    No full text
    Background and Objective. Progressive pulmonary fibrosis is the main cause of death in patients with systemic sclerosis (SSc) with interstitial lung disease (ILD) and in those with idiopathic pulmonary fibrosis (IPF). Transforming growth factor-β (TGF-β) and NADPH oxidase- (NOX-) derived reactive oxygen species (ROS) are drivers of lung fibrosis. We aimed to determine the role of the epigenetic readers, bromodomain and extraterminal (BET) proteins in the regulation of redox balance in activated myofibroblasts. Methods. In TGF-β-stimulated fibroblasts, we investigated the effect of the BET inhibitor JQ1 on the mRNA expression of the prooxidant gene NOX4 and the antioxidant gene superoxide dismutase (SOD2) by quantitative RT-PCR, the antioxidant transcription factor NF-E2-related factor 2 (Nrf2) activity by a reporter assay, and intracellular ROS levels by dichlorofluorescein staining. Myofibroblast activation was determined by α-smooth muscle actin immunocytochemistry. The role of specific BET protein isoforms in NOX4 gene regulation was studied by siRNA silencing and chromatin-immunoprecipitation. Results and Conclusions. Affymetrix gene array analysis revealed increased NOX4 and reduced SOD2 expression in SSc and IPF fibroblasts. SOD2 silencing in non-ILD control fibroblasts induced a profibrotic phenotype. TGF-β increased NOX4 and inhibited SOD2 expression, while increasing ROS production and myofibroblast differentiation. JQ1 reversed the TGF-β-mediated NOX4/SOD2 imbalance and Nrf2 inactivation and attenuated ROS production and myofibroblast differentiation. The BET proteins Brd3 and Brd4 were shown to bind to the NOX4 promoter and drive TGF-β-induced NOX4 expression. Our data indicate a critical role of BET proteins in promoting redox imbalance and pulmonary myofibroblast activation and support BET bromodomain inhibitors as a potential therapy for fibrotic lung disease

    Microarray profiling reveals suppressed interferon stimulated gene program in fibroblasts from scleroderma-associated interstitial lung disease

    Get PDF
    Background: Interstitial lung disease is a major cause of morbidity and mortality in systemic sclerosis (SSc), with insufficiently effective treatment options. Progression of pulmonary fibrosis involves expanding populations of fibroblasts, and the accumulation of extracellular matrix proteins. Characterisation of SSc lung fibroblast gene expression profiles underlying the fibrotic cell phenotype could enable a better understanding of the processes leading to the progressive build-up of scar tissue in the lungs. In this study we evaluate the transcriptomes of fibroblasts isolated from SSc lung biopsies at the time of diagnosis, compared with those from control lungs. Methods: We used Affymetrix oligonucleotide microarrays to compare the gene expression profile of pulmonary fibroblasts cultured from 8 patients with pulmonary fibrosis associated with SSc (SSc-ILD), with those from control lung tissue peripheral to resected cancer (n=10). Fibroblast cultures from 3 patients with idiopathic pulmonary fibrosis (IPF) were included as a further comparison. Genes differentially expressed were identified using two separate analysis programs following a set of pre-determined criteria: only genes significant in both analyses were considered. Microarray expression data was verified by qRT-PCR and/or western blot analysis. Results: A total of 843 genes were identified as differentially expressed in pulmonary fibroblasts from SSc-ILD and/or IPF compared to control lung, with a large overlap in the expression profiles of both diseases. We observed increased expression of a TGF-β response signature including fibrosis associated genes and myofibroblast markers, with marked heterogeneity across samples. Strongly suppressed expression of interferon stimulated genes, including antiviral, chemokine, and MHC class 1 genes, was uniformly observed in fibrotic fibroblasts. This expression profile includes key regulators and mediators of the interferon response, such as STAT1, and CXCL10, and was also independent of disease group. Conclusions: This study identified a strongly suppressed interferon-stimulated gene program in fibroblasts from fibrotic lung. The data suggests that the repressed expression of interferon-stimulated genes may underpin critical aspects of the profibrotic fibroblast phenotype, identifying an area in pulmonary fibrosis that requires further investigation

    MUC5B rs35705950 minor allele associates with older age and better survival in idiopathic pulmonary fibrosis

    No full text
    Background and Objective: The minor T-allele of the MUC5B promoter polymorphism rs35705950 is strongly associated with idiopathic pulmonary fibrosis (IPF). However, conflicting results have been reported on the relationship between the MUC5B minor allele and survival and it is unknown whether a specific subgroup of IPF patients might benefit from MUC5B minor allele carriage. We investigated the association between MUC5B rs35705950, survival and patient characteristics in a real-world population of European IPF patients. Methods: In this retrospective study, 1751 patients with IPF from 8 European centres were included. MUC5B rs35705950 genotype, demographics, clinical characteristics at diagnosis and survival data were analysed. Results: In a multi-variate Cox proportional hazard model the MUC5B minor allele was a significant independent predictor of survival when adjusted for age, sex, high resolution computed tomography pattern, smoking behaviour and pulmonary function tests in IPF. MUC5B minor allele carriers were significantly older at diagnosis (p = 0.001). The percentage of MUC5B minor allele carriers increased significantly with age from 44% in patients aged 75. In IPF patients aged <56, the MUC5B minor allele was not associated with survival. In IPF patients aged ≥56, survival was significantly better for MUC5B minor allele carriers (45 months [CI: 42–49]) compared to non-carriers (29 months [CI: 26–33]; p = 4 × 10−12). Conclusion: MUC5B minor allele carriage associates with a better median transplant-free survival of 16 months in the European IPF population aged over 56 years. MUC5B genotype status might aid disease prognostication in clinical management of IPF patients

    Defining genetic risk factors for scleroderma-associated interstitial lung disease : IRF5 and STAT4 gene variants are associated with scleroderma while STAT4 is protective against scleroderma-associated interstitial lung disease

    Get PDF
    Although several genetic associations with scleroderma (SSc) are defined, very little is known on genetic susceptibility to SSc-associated interstitial lung disease (SSc-ILD). A number of common polymorphisms have been associated with SSc-ILD, but most have not been replicated in separate populations. Four SNPs in IRF5, and one in each of STAT4, CD226 and IRAK1, selected as having been previously the most consistently associated with SSc-ILD, were genotyped in 612 SSc patients, of European descent, of whom 394 had ILD. The control population (n = 503) comprised individuals of European descent from the 1000 Genomes Project. After Bonferroni correction, two of the IRF5 SNPs, rs2004640 (OR (95% CI)1.30 (1.10-1.54), pcorr = 0.015) and rs10488631 (OR 1.48 (1.14-1.92), pcorr = 0.022), and the STAT4 SNP rs7574865 (OR 1.43 (1.18-1.73), pcorr = 0.0015) were significantly associated with SSc compared with controls. However, none of the SNPs were significantly different between patients with SSc-ILD and controls. Two SNPs in IRF5, rs10488631 (OR 1.72 (1.24-2.39), pcorr = 0.0098), and rs2004640 (OR 1.39 (1.11-1.75), pcorr = 0.03), showed a significant difference in allele frequency between controls and patients without ILD, as did STAT4 rs7574865 (OR 1.86 (1.45-2.38), pcorr = 6.6 × 10-6). A significant difference between SSc with and without ILD was only observed for STAT4 rs7574865, being less frequent in patients with ILD (OR 0.66 (0.51-0.85), pcorr = 0.0084). In conclusion, IRF5 rs2004640 and rs10488631, and STAT4 rs7574865 were significantly associated with SSc as a whole. Only STAT4 rs7574865 showed a significant difference in allele frequency in SSc-ILD, with the T allele being protective against ILD.Key points• We confirm the associations of the IRF5 SNPs rs2004640 and rs10488631, and the STAT4 SNP rs7574865, with SSc as a whole.• None of the tested SNPs were risk factors for SSc-ILD specifically.• The STAT4 rs7574865 T allele was protective against the development of lung fibrosis in SSc patients.• Further work is required to understand the genetic basis of lung fibrosis in association with scleroderma

    Serum markers of pulmonary epithelial damage in systemic sclerosis-associated interstitial lung disease and disease progression

    No full text
    BACKGROUND AND OBJECTIVE: The course of systemic sclerosis-associated interstitial lung disease (SSc-ILD) is highly variable, and accurate prognostic markers are needed. KL-6 is a mucin-like glycoprotein (MUC1) expressed by type II pneumocytes, while CYFRA 21-1 is expressed by alveolar and bronchiolar epithelial cells. Both are released into the blood from cell injury. METHODS: Serum KL-6 and CYFRA 21-1 levels were measured in a retrospective (n = 189) and a prospective (n = 118) cohort of SSc patients. Genotyping of MUC1 rs4072037 was performed. Linear mixed-effect models were used to evaluate the relationship with change in lung function parameters over time, while association with survival was evaluated with Cox proportional hazard analysis. RESULTS: In both cohorts, KL-6 and CYFRA 21-1 were highest in patients with lung involvement, and in patients with extensive rather than limited ILD. KL-6 was higher in patients carrying the MUC1 rs4072037 G allele in both cohorts. In patients with SSc-ILD, serum KL-6, but not CYFRA 21-1, was significantly associated with DLCO decline in both cohorts (P = 0.001 and P = 0.004, respectively), and with FVC decline in the retrospective cohort (P = 0.005), but not the prospective cohort. When combining the cohorts and subgrouping by severity (median CPI = 45.97), KL-6 remained predictive of decline in DLCO in both milder (P = 0.007) and more severe disease (P = 0.02) on multivariable analysis correcting for age, gender, ethnicity, smoking history and MUC1 allele carriage. CONCLUSION: Our results suggest serum KL-6 predicts decline in lung function in SSc, suggesting its clinical utility in risk stratification for progressive SSc-ILD
    corecore