1,169 research outputs found
They Like to Do It in Public: A Quantitative Analysis of Culture-Led Regeneration Projects in ITALY
This paper presents and discusses a quantitative analysis of culture-led urban regeneration initiatives in Italy. It draws on a database of projects built using the filter of the national funding schemes launched between 2012 and 2018. The main objective of the research is to build an overview of the phenomenon of culture-based urban regeneration in Italy, recognizing common trends and recurring dynamics. The projects in the database are analyzed quantitatively on the basis of 28 attributes, taking into consideration different aspects such as the projects' localization, the typology, dimension and ownership of the spatial assets mobilized, the relationship with public policies, and the scale of actors and networks involved in the projects. The findings show that culture-led regeneration initiatives "like to do it in public"; namely, to achieve their objectives-to "do culture"-they seek to connect with the public sector to receive forms of economic, material, and organizational support, such as public spaces in which to host their activities. Therefore, the interaction with the public administration is interpreted as the sine qua non condition for the success of culture-led urban regeneration initiatives and to ensure that these are able to generate strong and durable impacts on the revitalization and regeneration of distressed urban neighborhoods
Tissue-engineered grafts from human decellularized extracellular matrices: A systematic review and future perspectives
Tissue engineering and regenerative medicine involve many different artificial and biologic materials, frequently integrated in composite scaffolds, which can be repopulated with various cell types. One of the most promising scaffolds is decellularized allogeneic extracellular matrix (ECM) then recellularized by autologous or stem cells, in order to develop fully personalized clinical approaches. Decellularization protocols have to efficiently remove immunogenic cellular materials, maintaining the nonimmunogenic ECM, which is endowed with specific inductive/differentiating actions due to its architecture and bioactive factors. In the present paper, we review the available literature about the development of grafts from decellularized human tissues/organs. Human tissues may be obtained not only from surgery but also from cadavers, suggesting possible development of Human Tissue BioBanks from body donation programs. Many human tissues/organs have been decellularized for tissue engineering purposes, such as cartilage, bone, skeletal muscle, tendons, adipose tissue, heart, vessels, lung, dental pulp, intestine, liver, pancreas, kidney, gonads, uterus, childbirth products, cornea, and peripheral nerves. In vitro recellularizations have been reported with various cell types and procedures (seeding, injection, and perfusion). Conversely, studies about in vivo behaviour are poorly represented. Actually, the future challenge will be the development of human grafts to be implanted fully restored in all their structural/functional aspects
Neurotransmitter and receptor systems in the subthalamic nucleus
The Subthalamic Nucleus (STh) is a lens-shaped subcortical structure located ventrally to the thalamus, that despite being embryologically derived from the diencephalon, is functionally implicated in the basal ganglia circuits. Because of this strict structural and functional relationship with the circuits of the basal ganglia, the STh is a current target for deep brain stimulation, a neurosurgical procedure employed to alleviate symptoms in movement disorders, such as Parkinson's disease and dystonia. However, despite the great relevance of this structure for both basal ganglia physiology and pathology, the neurochemical and molecular anatomy of the STh remains largely unknown. Few studies have specifically addressed the detection of neurotransmitter systems and their receptors within the structure, and even fewer have investigated their topographical distribution. Here, we have reviewed the scientific literature on neurotransmitters relevant in the STh function of rodents, non-human primates and humans including glutamate, GABA, dopamine, serotonin, noradrenaline with particular focus on their subcellular, cellular and topographical distribution. Inter-species differences were highlighted to provide a framework for further research priorities, particularly in humans
Prediction accuracies of cheese-making traits using Fourier-transform infrared spectra in goat milk
The objectives of this study were to explore the use of Fourier-transform infrared (FITR) spectroscopy on 458 goat milk samples for predicting cheese-making traits, and to test the effect of the farm variability on their prediction accuracy. Calibration equations were developed using a Bayesian approach with three different scenarios: i) a random cross-validation (CV) [80% calibration (CAL); 20% validation (VAL) set], ii) a stratified CV [(SCV), 13 farms used as CAL, and the remaining one as VAL set], and iii) a SCV where 20% of the goats randomly selected from the VAL farm were included in the CAL set (SCV80). The best prediction performance was obtained for cheese yield solids, justifying for its practical application at population level. Overall results were similar to or outperformed those reported for bovine milk. Our results suggest considering specific procedures for calibration development to propose reliable tools applicable along the dairy goat chain
Thiopurine metabolites variations during co-treatment with aminosalicylates for inflammatory bowel disease: effect of N-acetyl transferase polymorphisms
AIM:
To evaluate variation of the concentration of thiopurine metabolites after 5-aminosalicylate (5-ASA) interruption and the role of genetic polymorphisms of N-acetyl transferase (NAT) 1 and 2.
METHODS:
Concentrations of thioguanine nucleotides (TGN) and methymercaptopurine nucleotides (MMPN), metabolites of thiopurines, were measured by high performance liquid chromatography in 12 young patients (3 females and 9 males, median age 16 years) with inflammatory bowel disease (6 Crohn's disease and 6 ulcerative colitis) treated with thiopurines (7 mercaptopurine and 5 azathioprine) and 5-ASA. Blood samples were collected one month before and one month after the interruption of 5-ASA. DNA was extracted and genotyping of NAT1, NAT2, inosine triphosphate pyrophosphatase (ITPA) and thiopurine methyl transferase (TPMT) genes was performed using PCR assays.
RESULTS:
Median TGN concentration before 5-ASA interruption was 270 pmol/8 x 108 erythrocytes (range: 145-750); after the interruption of the aminosalicylate, a 35% reduction in TGN mean concentrations (absolute mean reduction 109 pmol/8
7 108 erythrocytes) was observed (median 221 pmol/8
7 108 erythrocytes, range: 96-427, P value linear mixed effects model 0.0011). Demographic and clinical covariates were not related to thiopurine metabolites concentrations. All patients were wild-type for the most relevant ITPA and TPMT variants. For NAT1 genotyping, 7 subjects presented an allele combination corresponding to fast enzymatic activity and 5 to slow activity. NAT1 genotypes corresponding to fast enzymatic activity were associated with reduced TGN concentration (P value linear mixed effects model 0.033), putatively because of increased 5-ASA inactivation and consequent reduced inhibition of thiopurine metabolism. The effect of NAT1 status on TGN seems to be persistent even after one month since the interruption of the aminosalicylate. No effect of NAT1 genotypes was shown on MMPN concentrations. NAT2 genotyping revealed that 6 patients presented a genotype corresponding to fast enzymatic activity and 6 to slow activity; NAT2 genotypes were not related to thiopurine metabolites concentration in this study.
CONCLUSION:
NAT1 genotype affects TGN levels in patients treated with thiopurines and aminosalicylates and could therefore influence the toxicity and efficacy of these drugs; however the number of patients evaluated is limited and this has to be considered a pilot study
BNC2 is a putative tumor suppressor gene in high-grade serous ovarian carcinoma and impacts cell survival after oxidative stress
Rs3814113 is the single-nucleotide polymorphism (SNP) showing the strongest association with high-grade serous ovarian carcinoma (HGSOC) incidence and is located in an intergenic region about 44\u2009kb downstream of basonuclin 2 (BNC2) gene. Lifetime number of ovulations is associated with increased risk to develop HGSOC, probably because of cell damage of extrauterine M\ufcllerian epithelium by ovulation-induced oxidative stress. However, the impact of low-penetrance HGSOC risk alleles (e.g. rs3814113) on the damage induced by oxidative stress remains unclear. Therefore, the purpose of this study was to investigate whether rs3814113 genetic interval regulates BNC2 expression and whether BNC2 expression levels impact on cell survival after oxidative stress. To do this, we analyzed gene expression levels of BNC2 first in HGSOC data sets and then in an isogenic cell line that we engineered to carry a 5\u2009kb deletion around rs3814113. Finally, we silenced BNC2 and measured surviving cells after hydrogen peroxide (H2O2) treatment to simulate oxidative stress after ovulation. In this paper, we describe that BNC2 expression levels are reduced in HGSOC samples compared with control samples, and that BNC2 expression levels decrease following oxidative stress and ovulation in vitro and in vivo, respectively. Moreover, deletion of 5\u2009kb surrounding rs3814113 decreases BNC2 expression levels in an isogenic cell line, and silencing of BNC2 expression levels increases cell survival after H2O2 treatment. Altogether, our findings suggest that the intergenic region located around rs3814113 regulates BNC2 expression, which in turn affects cell survival after oxidative stress response. Indeed, HGSOC samples present lower BNC2 expression levels that probably, in the initial phases of oncogenic transformation, conferred resistance to oxidative stress and ultimately reduced the clearance of cells with oxidative-induced damages
Pharmacokinetics and pharmacodynamics of thiopurines in an in\ua0vitro model of human hepatocytes: Insights from an innovative mass spectrometry assay
AIM: To apply an innovative LC-MS/MS method to quantify thiopurine metabolites in human hepatocytes and to associate them to cytotoxicity.
METHODS:
Immortalized human hepatocytes (IHH cells) were treated for 48 and 96 h, with 1.4
7 10-4 M azathioprine and 1.1
7 10-3 M mercaptopurine, concentrations corresponding to the IC50 values calculated after 96 h exposure in previous cytotoxicity analysis. After treatments, cells were collected for LC-MS/MS analysis to quantify 11 thiopurine metabolites with different level of phosphorylation and viable cells were counted by trypan blue exclusion assay to determine thiopurines in vitro effect on cell growth and survival. Statistical significance was determined by analysis of variance (ANOVA).
RESULTS:
Azathioprine and mercaptopurine had a significant time-dependent cytotoxic effect (p-value ANOVA = 0.012), with a viable cell count compared to controls of 55.5% and 67.5% respectively after 48 h and 23.7% and 36.1% after 96 h; no significant difference could be observed between the two drugs. Quantification of thiopurine metabolites evidenced that the most abundant metabolite was TIMP, representing 57.1% and 40.3% of total metabolites after 48 and 96 h. Total thiopurine metabolites absolute concentrations decreased over time: total mean content decreased from 469.9 pmol/million cells to 83.6 pmol/million cells (p-value ANOVA = 0.0070). However, considering the relative amount of thiopurine metabolites, TGMP content significantly increased from 11.4% cells to 26.4% (p-value ANOVA = 0.017). A significant association between thiopurine effects and viable cell counts could be detected only for MeTIMP: lower MeTIMP concentrations were associated with lower cell survival (p-value ANOVA = 0.011). Moreover, the ratio between MeTIMP and TGMP metabolites directly correlated with cell survival (p-value ANOVA = 0.037).
CONCLUSION:
Detailed quantification of thiopurine metabolites in a human hepatocytes model provided useful insights on the association between thioguanine and methyl-thioinosine nucleotides with cell viability
In vitro assessment of a novel composite scaffold for articular cartilage restoration
Articular cartilage (AC) lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties [1]. The objective of our study was to design in vitro a supporting structure for cartilage chondrocytes to treat focal articular joint defects. We realized a bio-hybrid composite scaffold combining decellularized Wharton’s jelly (W’s J) with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA). The hydrogel itself and the more specific decellularized cartilage matrix were used as controls. Immunohistochemical analysis highlighted a similar histomorphology for W’s J and AC matrices. Human chondrocytes were isolated from articular cartilage by collagenase II digestion and then characterized by flow-cytometry and RT-PCR to assess the expression of specific markers. CD44+/CD73+/CD151+ chondrocytes were seeded on PVA, PVA/AC and PVA/W’s J scaffolds to test their ability to support cell colonization. According to SEM micrographs and MTT proliferation assay, PVA/W’s J revealed a singular attitude to sustain cell proliferation despite its aspecific origin. Our preliminary evidences highlighted the chance of using Wharton’s jelly in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration
In vitro and in vivo study of a novel biodegradable synthetic conduit for injured peripheral nerves
In case of peripheral nerve injury (PNI) with wide substance-loss, surgical reconstruction is still a challenge. Bridging the gap by autologous sensory nerves as grafts is the current standard; nevertheless, the related issues have prompted the research towards the development of effective artificial synthetic/biological nerve conduits (NCs). Here, we manufactured a novel NC using oxidized polyvinyl alcohol (OxPVA) that is a biodegradable cryogel recently patented by our group [1]. Thus, its characteristics were compared with neat polyvinyl alcohol (PVA) and silk-fibroin (SF) NCs through in vitro/in vivo analysis. Considering in vitro studies, a morphological characterization was performed by Scanning Electron Microscopy (SEM). Thereafter, cell adhesion and proliferation of a Schwann-cell line (SH-SY5Y) were evaluated by SEM and MTT assay. Regarding in vivo tests, the NCs were implanted into the surgical injured sciatic nerve (gap: 5 mm) of Sprague-Dawley rats, and the functional recovery was assessed after 12-weeks. The NCs were then processed for histological, immunohistochemical (anti-CD3; -β-tubulin; -S100) and Transmission Electron Microscopy (TEM) analyses. In particular, morphometric analyses (section area, total number and density of nerve fibers) were performed at the level of proximal, central and distal portions with respect to NC. In vitro results by SEM showed that PVA and SF supports have a smoother surface than OxPVA scaffolds. Moreover, unlike SF scaffolds, PVA-based ones do not support SH-SY5Y adhesion and proliferation. Regarding the in vivo study, all animals showed a functional recovery with normal walk, even though only animals implanted with PVA and SF NCs sometimes showed spasms while walking. On the contrary, animals implanted with OxPVA NCs exhibited a normal movement. Anti-CD3 immunohistochemistry assessed the absence of severe inflammatory reactions in all the grafts. A strong positive immunoreaction for β-tubulin and S100 demonstrated the good regeneration of nervous fibers. TEM highlighted regeneration of myelinated/un-myelinated axons and Schwann cells in all the grafts. However, morphometric analysis demonstrated that OxPVA assure a better outcome in nerve regeneration in terms of total number of nerve fibers. Our results sustain the potential of OxPVA for the development of NCs useful for PNI with substance loss with the advantage of biodegradation
- …