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1 Introduction

We read with interest the review article by Zou et al. (1) entitled “Techniques and

graft materials for repairing peripheral nerve defects”. Here, the Authors discuss current

approaches to peripheral nerve injury (PNI) with substance loss (autograft/allograft/nerve

conduit), also highlighting methods’ advantages and disadvantages, following our previous

contribution (2). In addition, appealing materials for nerve conduits (NC) fabrication

were overviewed too (1), highlighting that their intrinsic characteristics can affect the

regeneration outcome (1, 2).

Certainly, while looking for the ideal device, we believe that together with a focus on

conduit material, conduit topography must be considered too, as significantly modulating

nerve regeneration across the gap. Based on that, design strategies providing nerve guides

with specific topographic cues will be described and discussed below.

2 Nerve conduits designs

2.1 Nerve conduits with porous wall

According to size, biomaterials pores can be classified as macropores (100–500µm),

micropores (<100µm), and nanopores (<1,000 nm). Surely, wall pore dimension affects

the device inner environment; acting as a strain, a porous wall can select the molecules

that can be exchanged between the regenerated peripheral nerve and the surrounding

environment, thus influencing cell viability/proliferation/blood vessels infiltration (3, 4).

Fully permeable (pore diameter: >50µm), semi-permeable (pore diameter: <10µm),

and asymmetric (external surface pore size > lumen surface pore size) conduits have

been developed to overcome autograft issues in case of severe PNI. These nerve guides

showed to improve the neuro-regenerative process under different aspects. Specifically,

semi-permeable conduits can avoid fibrous scar formation; fully-permeable conduits

can promote direct signal communication between cells; asymmetric structures-based

conduits can assure for efficient removal of metabolic waste. Nevertheless, some intrinsic

disadvantages related to their use still need to be addressed, including no direct signal
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communication between cells affecting semi-permeable and

asymmetric structures and the risk of fibrous infiltration

concerning fully-permeable devices (3).

Porosity and pore size are often dependent on scaffold

fabrication method (4); conduits fabricated using traditional

methods are mainly characterized by pores with random

morphology. Hence, lithography processes, electrospinning,

and 3D printing technology are gaining researchers’ attention,

distinguishing as promising techniques in exerting control over

wall porosity dimension/organization (2).

2.2 Nerve conduits with grooved wall

Schwann cells (SCs) growth direction and migration in

the postinjury microenvironment exert a fundamental role in

promoting axon growth. Thus, the development of conduits

displaying a regular topology can discourage random distribution

of SCs (5). NC eventually endowed by anisotropic topographical

cues, consisting in micro- and nanogroove patterns in the luminal

wall, have received extensive attention. In fact, patterns can

trigger a contact guidance effect, thus instructing cells to align

along a preferential direction and significantly influencing neurite

outgrowth, cellular alignment, elongation and differentiation (6–8).

Thin microgrooves (5–10µm) confine the growth of cells

and axon elongation; grooves with widths and spacings of 10–

20µm favorably support SC adhesion and proliferation; patterns

comparable with cell dimensions (10–50µm) are appealing too.

The narrower microgrooves were found to improve axonal

alignment, diminish the number of axon branches per cell, and

decrease incorrect distal re-connection (2, 9). Groove depth can

also affect surface/cells interaction. To support neurite alignment

or outgrowth, depths ranging from 1 to 4µm are adequate;

conversely, sizes inferior to 300 nm revealed to be less favorable.

Difficulties in fabrication are the main critical issue in the

development of grooved conduits (2, 10). Various approaches have

been developed to produce scaffolds with anisotropic structure,

including electrospinning, lithography, and 3D bioprinting (7).

2.3 Nerve conduits with multichannel

A multichannel conduit may be more likely to preserve

the linear organization of regenerating axons in the peripheral

nerve (10).

Introduction of macroscale, longitudinally oriented

multichannels within NC can guarantee a permissive pathway

for axon growth, favoring SCs’ attachment, as well as growth

factors’ release. Contextually, they can reduce the dispersion of

regenerating axons avoiding their own consequent misdirection,

eventually associated with different target polyinnervation (11, 12).

According to the literature, the number/diameter of the channels

within a single conduit may vary, ranging from 1 channel/conduit

(13) to over 100 (14). Certainly, the presence of multichannels

within the conduits provides for a regenerative environment which

better mimics the native nerve fascicular structure (2).

Different methods have been adopted for multichannel

conduit fabrication, including solvent or thermally induced

phase separation, injection molding, electrospinning, and 3D

printing (15).

2.4 Nerve conduits with fillers

Introducing luminal fillers into conduits aims not only

to enhance conduit-associated outcomes at shorter distances

but also to improve nerve reconstruction in case of wide

gaps (16). Several studies report the incorporation of macro-

, micro-, and nanoscale filler materials within the NC to

encourage axon regeneration (12). Different natural (e.g., fibrin,

collagen, laminin, and agarose) and synthetic polymers [e.g.,

polyamide, polyacrylonitrile-co-methylacrylate, polyglycolic acid,

poly-L-lactic acid, and poly(lactic-co-glycolic acid)] have been used

as solutions, hydrogel filaments, porous sponges or films (2, 9, 17,

18).

Recently, attention has been directed to Self-Assembling

Peptides (SAPs), mimicking ECM organization. SAPs

consist in short peptide molecules self-organizing into

stable secondary structures (α-helix, β-sheet, or random

coil) and further forming various aggregation states (fibrils,

fibril networks, membranes, and gels) under in vivo pH

and ion concentration (2, 19–25). Additionally, SAPs

functionalization with the laminin-derived peptide IKVAV

(sequence: isoleucine–lysine–valine–alanine–valine) (19–21, 23),

or brain-derived neurotrophic factor (BDNF) (21) have been

also used to improve outcomes of chitosan or poly(L-lactide)

(PLLA) conduits.

3 Discussion

Intense efforts are dedicated toward the fabrication of the ideal

NC. Certainly, the biomaterial adopted for devices’ fabrication

has a fundamental role over their outcomes; interestingly,

a blend of synthetic and natural polymers can assure for

appropriate structural/mechanical support (synthetic polymer)

and biomimicry (natural polymer) (26). However, providing

topographic cues is essential too. Porous and grooved walls,

multi-channel conduits, and NC with fillers (in the form of

fibers or hydrogels) are among the most appealing strategies

for conduits structure/ultrastructure bioactivation (2, 27). The

selected biomaterial and the desired topographical cues to be

introduce will critically guide toward the fabrication technique to

be adopted (12).
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